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Abstract. The motion of a single rigid or elastic particle inside a corrugated narrow channel is investi-
gated by means of Brownian dynamics simulations. Periodic oscillations of one of the asymmetric channel
surfaces induce directed particle transport. For different surface structures of the resting channel surface,
we determine optimal transport properties in terms of the driving frequency, particle size, and corrugation
amplitude. The transport direction is changed when switching from perpendicular motion of the oscillating
surface to parallel motion with respect to the resting surface, which can be rationalized by a transition
from a flashing to a pushing ratchet effect. We also study the diffusion behavior and find strongly en-
hanced diffusion for parallel oscillatory motion with a diffusivity significantly larger than for free diffusion.
Elastic large particles exhibit suppressed transport with increasing rigidity. In contrast, for small particles,
increasing rigidity enhances the particle transport both in terms of particle velocity and diffusivity.

1 Introduction

The so-called ratchet effect describes the directed Brow-
nian motion of particles generated by a non-equilibrium
perturbation of a periodic system. One necessary ingredi-
ent is that the spatial symmetry is broken in order to
single out one direction over the other [1–8]. Ratchet-
shaped surfaces are observed in a number of different bi-
ological systems ranging from biopolymers [9, 10] such as
actin [11], the cuticular structure of hair [12], to macro-
scopic systems [13,14] like plants [15]. A different class of
ratchet systems is constituted by self-propelled swimmers
on asymmetric substrates, where motion is rectified by ac-
tive particles instead of external driving [16]. Yet another
example of rectified transport is the Tesla valve, already
patented in 1916, where an asymmetrically shaped pipe
allows for a fluid to flow preferentially in one direction,
an effect that is due to the onset of turbulent flow [17].
This whole field presents an area of active research, as
ratchet effects and the resulting net current can be utilized
for applications like cargo transport, e.g. in drug delivery
systems [18], or for separation and sorting of nanoparti-
cles [19].

In this study, we introduce a geometric two-dimen-
sional ratchet model and investigate the transport proper-
ties of a single diffusing nanoparticle inside a narrow cor-
rugated channel. One of the channel surfaces is modeled
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as an asymmetric surface and subject to oscillatory mo-
tion. The other channel surface is resting and has varying
surface structures. This model is inspired by nanoparticle
transport into hair follicles [12,20], where it has been hy-
pothesized that the cuticular hair surface structure causes
a ratchet effect and rectifies nanoparticle motion toward
the hair root induced by motion of the hair [21, 22]. We
study transport properties of the nanoparticle under peri-
odic motion of the oscillating surface in perpendicular and
parallel direction with respect to the resting surface. For
varying frequencies of perpendicular motion, we find di-
rected particle motion with an optimal driving frequency.
We also find a slight enhancement of the particle diffusiv-
ity. We observe reversal of the transport direction when
changing the surface oscillation mode from perpendicular
to parallel. For parallel motion, a significant enhancement
of the diffusion is observed with diffusivities larger than
for free diffusion. Studying the influence of the particle
size and corrugation amplitude of the oscillating surface
on the transport efficiency, we determine an optimal par-
ticle size and an optimal corrugation amplitude. We also
study elastic nanoparticles and find that for large particle
sizes, comparable to the surface separation, elasticity leads
to more efficient particle transport. In contrast, for small
particles efficient transport is observed when the rigidity
is large. The first section introduces the model and details
the Brownian dynamics simulations. In the last section we
conclude with a short summary.
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Fig. 1. (a) Schematic illustration of a nanoparticle inside a narrow corrugated channel. The particle (grey) of radius R is either
rigid (left) or elastic (right) consisting of two subunits that are vertically connected by a spring. The lower oscillating surface
(black) and the upper resting surface (red) are separated by a distance dexp and exhibit the same corrugation amplitude χ
and the same periodicity L. Surface oscillations are either perpendicular with amplitude Ax or parallel with amplitude Az. A
biological example for such a narrow channel is the space between a hair and the follicle. (b) Electron microscopic image of the
cuticular structure of the human terminal hair [24]. (c) Contour plot of the potential energy equation (4) in units of kT for the
rescaled model parameters d/L = 1.0, χ/L = 0.3, m = 1. The red trajectory illustrates the Brownian motion of a nanoparticle
in the absence of external driving.

2 Model and simulation details

The motion of a single nanoparticle inside a narrow chan-
nel is modeled in two dimensions interacting with an
externally driven corrugated oscillating surface and an
opposing resting surface with different surface structures.
As schematically depicted in fig. 1(a), we use an asymmet-
ric sawtooth structure to represent the lower oscillating
surface. A biological example is the cuticular hair surface,
shown in fig. 1(b), for which the resting surface (shown
in red) in fig. 1(a) corresponds to the inner root sheath,
i.e. the innermost layer of the hair follicle. By interlocking
of the cuticular hair surface with the oppositely oriented
cuticle cells of the inner root sheath, the hair is anchored
in the follicle [23].

For a general model, the sawtooth structure of the os-
cillating and the resting surface, shown in fig. 1(a) in black
and red, respectively, are characterized by the corrugation
amplitude χ and the periodicity L. Note that in the first
part the rigid nanoparticle is modeled as point-like and we
neglect deformational and rotational degrees of freedom.
The effect of different particle sizes is taken into account
in our simulations via the surface separation d. In order
to connect to the experimental situation, the experimen-
tal distance between the hair and the follicle surfaces is
defined as dexp = d+2R and thus effectively incorporates
the effect of changing particle radius R.

We model the repulsion of the nanoparticle from the
two surfaces, separated by the distance d, employing ex-

ponentially decaying potentials located on the oscillating
surface and the resting surface

Uosc(x) = e−
x+d/2−Ax sin ωt

κ , (1)

Ures(x) = e
x−d/2

κ , (2)

with a short rescaled surface interaction range κ/L = 0.2.
The oscillating surface is externally driven either into per-
pendicular motion with respect to the channel axis, or
into parallel motion. Perpendicular ratchet motion, illus-
trated in fig. 2(b), is included in our model via the time-
dependent periodic term in the potential equation (1) with
frequency ω and amplitude Ax. The sawtooth shape of
the potential energy landscape is achieved with a ratchet
shape function [25] given by

F (z) = −χ

[
sin(2πz/L) +

1
4

sin(4πz/L)
]

. (3)

The total potential energy reads

U(x, z)=Uosc (x+F (z+Az sinωt)) + Ures (x+F (m · z)) ,
(4)

where we introduce a structure parameter m = −1, 0, 1 as
well as the periodic parallel motion of the oscillating sur-
face with amplitude Az, which is illustrated in fig. 4(b).
We introduce the parameter m in order to study the effect
of different structures of the resting surface. For the exam-
ple of hair, this can represent the different follicle surface
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Fig. 2. Results for a rigid particle subject to perpendicular mo-
tion of the oscillating surface with amplitude Ãx = 0.5 (while
Ãz = 0) shown for the three different resting surface struc-
tures illustrated in (b) from top to bottom: interlocked case
m = 1 (black symbols), flat case m = 0 (orange symbols), and
symmetric case m = −1 (cyan symbols). The corrugation am-
plitude is fixed to χ̃ = 0.5 and the surface separation is d̃ = 1.
(a) The average rescaled velocity Ṽ exhibits a maximum at
a rescaled frequency ω̃ ≈ 100. The position of the maximum
slightly depends on the structure parameter m. The largest ve-
locity is achieved for the flat case, m = 0, for which also the
rescaled diffusivity D̃ in (c) is the largest. The diffusivity only
weakly depends on ω̃ for m = −1 and slightly decreases for
large frequencies. A more pronounced maximum in the diffu-
sivity is observed for m = 0 and m = 1 at a frequency ω̃ ≈ 50
which is slightly smaller than the frequency corresponding to
the maximum in the average velocity Ṽ seen in (a).

structures, as the cuticle structure of the follicle presum-
ably changes towards the root from a sawtooth shape to
a relatively smooth surface [26]. We investigate three dif-
ferent resting surface structures as illustrated in fig. 2(b)
from top to bottom: the interlocked case, m = 1, the flat
case, m = 0, and the symmetric case with respect to the
channel axis, m = −1. A contour plot of the potential
energy, eq. (4), is shown in fig. 1(c) for the interlocked
case, m = 1, with rescaled parameters d/L = 1.0 and
χ/L = 0.3, where a red trajectory illustrates the Brown-
ian motion of a nanoparticle.

We perform Brownian dynamics simulations based on
the overdamped Langevin equation,

ẋ = −μ0 ∂xU(x, z) + ξx(t)

ż = −μ0 ∂zU(x, z) + ξz(t), (5)

which describes the diffusion of the particle in the perpen-
dicular x-direction as well as in the parallel z-direction.
The first term in eq. (5) accounts for the direct force
acting on the particle with mobility μ0 and the second
term represents the stochastic contribution ξα given by
Gaussian random components with correlations accord-
ing to the fluctuation-dissipation theorem, 〈ξα(t)ξβ(t′)〉 =
2kT μ0 δαβδ(t− t′), with α, β = x, z, and vanishing mean.
Note that in our model we assume the fluid background to
be at rest, so we neglect any back-flow effects that might

be caused by the oscillatory motion of the surface and
which could influence the particle motion. We also ne-
glect the possible adhesion of the particle on the surfaces,
which in the case of cargo transport by microtubuli has
been found to give rise to interesting transport proper-
ties [10].

In the following all quantities used are made dimen-
sionless by rescaling lengths according to x̃ = x/L by the
periodic length scale of the sawtooth structure L, ener-
gies Ũ = U/kT by thermal energy and times t̃ = t/τ by
the characteristic particle diffusion time τ = L2/μ0kT =
6πηR L2/kT with viscosity η. For one set of parameters
the simulation typically runs for 109 time steps with a
rescaled time step Δt/τ = 10−4. From the simulations we
obtain the average parallel velocity V = 〈(x(t + 103Δt)−
x(t))/(103Δt)〉 by sampling the particle position every 103

steps as well as the diffusivity D by calculation of the mean
square displacement

〈
(x(t) − x(0))2

〉
= 2Dt + V 2t2. (6)

In this study we also consider elastic nanoparticles and
the effect of rigidity ζ on the transport properties. As
schematically illustrated in fig. 1(a) (right), we model elas-
tic nanoparticles as a dumbbell consisting of two nanopar-
ticle subunits that are vertically connected by a harmonic
spring of length R and spring constant ζ. Note that the
dumbbell cannot rotate and thus only represents the ver-
tical nanoparticle elasticity. The nanoparticle is now de-
scribed by two vertical positions x1 and x2, while the posi-
tion z along the parallel direction is the same for both sub-
units. The corresponding Langevin equation is given by

ẋ = −μ0 ∂xUel + ξx(t), (7)

ż1 = −μ0 ∂z1Uel + ξz1(t), (8)

ż2 = −μ0 ∂z2Uel + ξz2(t), (9)

where the potential energy for the elastic nanoparticle is
defined by

Uel = U(x, z1) + U(x, z2) −
ζ

2
(|z1 − z2| − R)2 . (10)

3 Results

3.1 Transport properties of a rigid particle

First we study the particle transport for perpendicular
motion of the oscillating surface as a function of the
rescaled driving frequency ω̃ = ωτ with fixed amplitude
Ãx = 0.5 (while Ãz = 0). This situation is schematically
depicted in the top of fig. 2(b). The distance d̃ = 1 between
the oscillating and resting surface is fixed and the corru-
gation amplitude is set to χ̃ = 0.5. Results for the average
velocity Ṽ and diffusivity D̃ are shown in figs. 2(a), (c)
for different values of the structure parameter m = −1, 0, 1
with the corresponding resting surface structures shown in
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Fig. 3. Demonstration of how the rescaled simulation results in
fig. 2a (for m = 0) of the average transport velocity V translate
to physical units. The assumed physical parameters are corru-
gation length L = 5 μm, corrugation amplitude χ = 2.5 μm,
nanoparticle radius R = 0.3 μm, surface separation d = 5 μm,
oscillation amplitude Ax = 2.5 μm (Az = 0), and tempera-
ture T = 310 K. When choosing different fluid viscosities cor-
responding to air (grey), water (black), and glycerol (orange
symbols), both the optimal driving frequency ω of the perpen-
dicularly oscillating surface as well as the resulting transport
velocity vary by several orders of magnitude.

fig. 2(b). We find enhanced particle transport to the right
induced by the perpendicular ratchet motion, as seen from
the positive average velocity in fig. 2(a) as a function of
frequency. There is an optimal frequency at which the av-
erage velocity exhibits a maximum, the position and mag-
nitude of which depends on the resting surface structure.
The largest velocity is achieved for the flat case, m = 0.
The interlocked case, m = 1, leads to slightly larger ve-
locities compared to the symmetric case, m = −1. As
shown in fig. 2(c), the largest diffusivity D̃ is observed
for m = 0, with a maximum at somewhat smaller val-
ues of ω̃ compared to the optimal frequency of the av-
erage velocity shown in fig. 2(a). For m = 0, at inter-
mediate frequency the diffusivity exceeds the equilibrium
value D̃ = 0.6 obtained in the absence of oscillation (limit
ω̃ → 0 or Ãx → 0). The smallest diffusivity is observed
for m = −1 with a weak dependence on the frequency; for
large ω̃ > 100 the diffusivity monotonically decreases for
all values of m.

In order to be able to compare our simulations with
experiments, we present in fig. 3 the average transport ve-
locity in physical units as a function of the perpendicular
driving frequency, which is the same data already shown
in fig. 2(a) for m = 0. For this plot we assume a charac-
teristic corrugation length scale L = 5μm, which corre-
sponds to the length scale of the cuticular hair structure
in fig. 1(a), a corrugation amplitude χ = 2.5μm, and a
particle radius R = 0.3μm. Simulation results in fig. 3 are
shown for a temperature T = 310K and three different
viscosities: the viscosity of air, η = 18μPa s, the viscos-
ity of water, η = 0.001Pa s, and the viscosity of glycerol,
η = 1.4Pa s. It can be seen that the optimal frequency
and the resulting transport velocity strongly depend on
the system viscosity. For the case of nanoparticle motion
in the hair follicle, we conclude that the local fluid viscos-
ity inside the hair follicle is a very important parameter
that sensitively influences the directed particle transport
properties. When we assume a local viscosity close to that

V < 0

m = -1

m = 0

m = 1

A
z
sin(ωt)
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Fig. 4. Results for a rigid particle subject to parallel motion of
the oscillating surface with amplitude Ãz = 0.5 (while Ãx = 0)
for fixed χ̃ = 0.5 and d̃ = 0.2. (a) For the interlocked case,
m = 1, (black symbols) the average rescaled velocity Ṽ is neg-
ative and decreases with increasing the frequency and exhibits
a minimum at ω̃ ≈ 80. A flat resting surface m = 0, (orange
symbols) induces larger negative velocities with a minimum at
ω̃ ≈ 160. For m = −1 (cyan symbols) the particle transport
is less pronounced. (b) Illustration of the different resting sur-
face structures. (c) The diffusivity as a function of frequency
exhibits for m = 1 and m = 0 a maximum at a frequency cor-
responding to the minimum in average velocity shown in (a).
Diffusivities larger than for free diffusion D̃ > 1 are observed
for a flat resting surface, m = 0. For the case m = −1, the
diffusivity only weakly depends on the frequency.

a)
i)

ii)

iii)

b)
i)

ii)

iii)

Fig. 5. (a) Illustration of perpendicular ratchet motion and the
flashing ratchet effect that leads to transport of the nanopar-
ticles to the right, i.e. down the shallow slopes. i) Upward
motion leads to strong particle localization in the potential
minima. Subsequent downward motion in ii) allows relaxation
and particle diffusion from the minima over the barriers with
the steep slope. Transport to the right results in iii) from up-
wardly moving the surface that pushes some particles down the
shallow slopes. (b) Illustration of the parallel ratchet motion
and the pushing ratchet effect that leads to transport of the
nanoparticles to the left. i) The oscillating surface moves to the
left and the steep slopes push particles to the left. ii) Ratchet
motion to the right has a less pronounced effect on the parti-
cles, which can diffuse over the flanks with the shallow slope
to the left. iii) Subsequent leftward ratchet motion again leads
to localization and forced motion of the particles to the left.

of water, our simulation results suggest maximal transport
velocities of about 30 nm/s at frequencies of a few Hertz.

Next we consider the parallel motion of the oscillat-
ing surface as schematically shown in fig. 4(b). The av-
erage velocity and the diffusivity of a rigid particle are
presented in figs. 4(a), (c) as a function of frequency ω̃ for
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Fig. 6. Comparison of directed transport and diffusive transport of a rigid particle for fixed parameters χ̃ = 0.5 and m = 0.
(a) The characteristic time scale for directed motion t̃v = l̃/|Ṽ | (solid line) and diffusive motion t̃d = l̃2/D̃ (dashed line) as a
function of transport length l̃. For perpendicular ratchet motion with amplitude Ãx = 0.5 and a surface separation of d̃ = 1, as
seen in fig. 2(a), we find the maximal particle velocity Ṽ = 0.18 at ω̃ = 113, where D̃ = 0.7. The dotted line shows the time scale
for diffusive motion in the absence of external driving (ω = 0) for which D̃0 = 0.6. The vertical gray bar indicates the transition
from diffusive to directed transport. (b) The corresponding crossover length l̃∗ = D̃/|Ṽ | at which both time scales are equal,
t̃v = t̃d, is plotted as a function of the frequency using the data from figs. 2(a), (c) for m = 0. (c) The time scales as a function
of the transport length for parallel motion (Ãz = 0.5 and Ãx = 0) and for d̃ = 0.2 with ω̃ = 162, Ṽ = −0.81, and D̃ = 1.78. (d)
The crossover length l̃∗ = D̃/|Ṽ | as a function of frequency for parallel motion using the data shown in figs. 4(a), (c) for m = 0.

fixed χ̃ = 0.5 and a distance d̃ = 0.2. As opposed to per-
pendicular ratchet motion in fig. 2, we observe negative
velocity for all values of m, i.e. we obtain particle trans-
port to the left. For the interlocked case, m = 1, and the
flat case, m = 0, the velocity decreases with increasing
the frequency to a minimum, as shown in fig. 4(a), and
simultaneously the diffusivity shown in fig. 4(c) exhibits a
maximum. The overall diffusivity is enhanced compared to
the equilibrium case ω̃ = 0 for which D̃ = 0.05 for m = 0
and D̃ = 0.18 for m = −1. In particular, the flat structure
m = 0 leads to diffusivities D̃ > 1 that are significantly
larger than for free diffusion, which is obtained in the limit
of large surface separations, in which case D̃ = 1. Chang-
ing the surface structure to m = −1 (fig. 4(b), bottom)
leads to suppressed transport with small negative veloci-
ties and a small diffusivity that only weakly depends on
the frequency. We conclude that parallel motion of the
oscillating surface can greatly enhance the diffusive trans-
port of the nanoparticle while it leads to a negative aver-
age velocity, i.e., directed transport to the left. This raises
the question of what the dominating mode of transport for
parallel motion is, a question we will address later on.

In fig. 5 we give a pictorial explanation for the differ-
ence between perpendicular and parallel oscillatory sur-
face motion and the resulting flashing and pushing ratchet
effects, respectively. Perpendicular ratchet motion, illus-
trated in fig. 5(a), causes an effect similar to what is
known as the flashing ratchet effect [5, 27]. In contrast
to previous theoretical models, here we consider a moving
ratchet-shaped surface and two-dimensional particle mo-
tion instead of a ratchet potential in one dimension that
is switched on and off. However, the mechanism of alter-
nating particle localization and diffusion over a barrier

is similar, including the necessary condition of a spatial
symmetry breaking of the potential landscape. As seen in
fig. 5(a), the perpendicular ratchet motion leads to parti-
cle transport to the right, which means that particles in
step ii) diffuse from the minima over the steep flanks and
are then in step iii) pushed down the shallow flanks to
the right. Parallel ratchet motion, illustrated in fig. 5(b),
causes a pushing ratchet effect. Due to spatial asymmetry,
particles are in step i) predominantly pushed to the left
by the steep flanks and in step ii) diffuse over the barrier
of the shallow flanks to the next minimum on the left.

3.2 Diffusive vs. directed transport

In order to illustrate the difference between directed and
diffusive transport, we plot in fig. 6(a) the characteristic
time scale for directed motion, t̃v = l̃/|Ṽ |, and for dif-
fusive motion, t̃d = l̃2/D̃, as a function of the transport
length l̃ using the maximal velocity Ṽ = 0.18 (at ω̃ = 113),
obtained from fig. 2(a) for perpendicular surface motion
and m = 0, where the diffusivity is D̃ = 0.7. For short
transport length less than about l̃ = 3.8, diffusive trans-
port, shown as a dashed line in fig. 6(a), is more effective,
as indicated by a shorter characteristic time, compared
to directed transport shown as a solid line. At a length
l̃∗ = D̃/Ṽ , indicated by a vertical gray bar in fig. 6(a),
both times scales are equal, t̃v = t̃d. For a larger trans-
port length directed motion leads to a smaller characteris-
tic time compared to diffusive transport. For comparison,
we also show the diffusive time in the absence of oscilla-
tory surface motion, t̃0 = l2/D̃0. In fig. 6(b), the crossover
length l̃∗ = D̃/|Ṽ | is shown as a function of frequency ω̃
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Fig. 7. A rigid particle under perpendicular ratchet motion with fixed frequency ω̃ = 100. For the interlocked case, m = 1, the
(a) average velocity Ṽ and the (b) diffusivity D̃ are plotted as a function of surface separation d̃ for a few different oscillation
amplitudes Ãx. The optimal distance for the enhanced transport of the particle to the right is about d̃ = 1 at which Ṽ exhibits a
maximum. With increasing the amplitude Ãx the transport of the particle is more pronounced and the average velocity increases.
For small amplitudes the diffusivity in (b) monotonically increases towards the free diffusion limit. Large amplitudes lead to a
minimum in the diffusivity at distances d̃ that are slightly larger than the optimal distances in terms of particle velocity in (a).
(c) For a fixed amplitude Ãx = 0.5 the velocity is shown for different values of m and varying distance d̃. Maximal velocity and
(d) diffusivity is observed for the flat case, m = 0 due less surface overlap.

for the same parameters used in fig. 6(a). We see that the
crossover length exhibits a broad minimum at a frequency
of about ω̃ = 100. For the case of parallel motion with
Ãx = 0.5 and Ãz = 0, shown in figs. 6(c), (d), the tran-
sition from diffusive transport to the regime of directed
transport occurs at a shorter time scale and at a smaller
transport length l̃∗ compared to perpendicular motion.
Note that we use different surface separations: d̃ = 1 for
perpendicular and d̃ = 0.2 for parallel motion. The di-
agram in fig. 6(d) shows that the crossover length only
weakly depends on the frequency of the parallel oscillat-
ing surface; only for large ω̃ > 400 the diffusive regime
becomes dominant and l̃∗ increases.

3.3 Influence of particle size and surface structure

The investigation of the effect of different distances d̃ be-
tween the oscillating surface and the resting surface in our
model presents a way to determine the influence of par-
ticle size on particle transport. In figs. 7(a), (b) we show
results for the average particle velocity Ṽ and diffusivity
D̃, respectively, for the interlocked case, m = 1, fixed per-
pendicular frequency ω̃ = 100, and a few different values
of the oscillation amplitude Ãx. Small distances d̃ ≤ 0 lead
to particle trapping due to confinement in the interlocked
sawtooth surfaces characterized by small average veloci-
ties and small diffusivities. The optimal distance in terms
of particle transport to the right is at about d̃ = 1, which
corresponds to twice the corrugation amplitude χ̃ = 0.5.
This means that transport is most pronounced when the
surfaces are close but not overlapping in order to pre-
vent the particle from being trapped. For larger distances
d̃ > 10 the free diffusion limit is approached with van-

ishing average velocity and diffusivity D̃ = 1, fig. 7(b).
The overall average velocity in fig. 7(a) increases with in-
creasing amplitude Ãx. The diffusivity in fig. 7(b) mono-
tonically increases with d̃ only for small amplitudes Ãx.
For Ãx ≥ 1 the diffusivity exhibits a minimum at about
d̃ = Ãx. In figs. 7(c), (b) results are presented for a fixed
amplitude Ãx = 0.5 and different resting surface struc-
tures m = 1, 0,−1. The largest velocity and diffusivity is
observed for the flat case. Only for small distances d̃ < 0.4
the interlocked case (m = 1) yields a finite diffusivity of
D̃ ≈ 0.3 whereas the other cases m = 0,−1 approach
vanishing diffusivity when the surface distance decreases.
Noticeably, negative velocities are observed for the inter-
locked case for very small d̃ ≤ −0.4 with strong surface
overlap. This is an example of current reversal [25] in-
duced by the variation of a system parameter that does
not change the symmetry of the system.

The effect of different corrugation amplitudes χ̃ of the
sawtooth structure is illustrated in figs. 8(a), (b) show-
ing the average velocity and diffusivity as a function of χ̃
for different structure parameters m = 1, 0. The distance
between the ratchet and resting surface is set to d̃ = 1
and perpendicular motion is applied with fixed amplitude
Ãx = 0.5 and frequency ω̃ = 100. The average velocity
in fig. 8(a) vanishes for low as well as for large values
of χ̃ with a maximum at χ̃ = 0.4 (χ̃ = 0.5) for m = 1
(m = 0). Note that our simulation results thus suggest
an optimal nanoparticle transport into hair follicles for a
corrugation amplitude of χ = 2μm (for L = 5μm), which
is larger than the typical cuticular hair thickness of about
0.6μm [12] that can be estimated from the microscopic
image in fig. 1(a). The diffusivity shown in fig. 8(b) mono-
tonically decreases from the free diffusion value D̃ = 1 for
χ̃ = 0 to very small values for large χ̃ = 0, since the
particle gets trapped between the surfaces.
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Fig. 8. A rigid particle subject to perpendicular ratchet mo-
tion with fixed d̃ = 1, Ãx = 0.5 and ω̃ = 100. (a) Average
velocity and (b) diffusivity as a function of corrugation ampli-
tude χ̃ for the structure parameters m = 1 (black) and m = 0
(orange).

Fig. 9. An elastic nanoparticle is modeled via eq. (10) as a har-
monic dumbbell of length R̃. Subject to perpendicular ratchet
motion with fixed Ãx = 0.5, ω̃ = 100, χ̃ = 0.5, d̃ = 1, and
m = 0, the (a) average velocity as a function of rigidity ζ̃
monotonically decreases for a large particle with R̃ = 1 (black)
and increases for a slightly smaller particle radius R̃ = 0.5 (or-
ange). For very small R̃ = 0.2 (cyan), the rigidity only weakly
influences the particle velocity. For a larger distance d̃ = 2
and radius R̃ = 2 (gray open symbols) the velocity first in-
creases with the rigidity to a maximum until it collapses with
the black curve. (b) The diffusivity is larger for smaller parti-
cles. Whereas the largest particles exhibit a decreasing diffusiv-
ity with increasing the rigidity, small particles show increasing
diffusivity when they become stiffer.

3.4 Influence of particle elasticity

In order to model an elastic nanoparticle we use a har-
monic dumbbell with the potential energy eq. (10). The
dumbbell length R̃ corresponds to the particle size and the
rescaled spring constant ζ̃ = ζ̃R2/kT corresponds to the
particle rigidity. In fig. 9 we present results for an elastic

particle of different size R̃ subject to perpendicular ratchet
motion with fixed amplitude Ãx = 0.5 and frequency
ω̃ = 100. The corrugation amplitude is χ̃ = 0.5 and the
resting surface is flat, m = 0. For a small surface distance
d̃ = 1 and a comparable particle size R̃ = 1 the average ve-
locity, shown as black symbols in fig. 9(a), monotonically
decreases with increasing the rigidity ζ̃. Interestingly, the
velocity for d̃ = 2 and R̃ = 2 (also giving rise to R̃/d̃
= 1), shown as gray open symbols, first increases to a
maximum around ζ̃ = 5 and for a larger rigidity collapses
with the black line. In contrast, a slightly smaller parti-
cle with R̃ = 0.5, shown for d̃ = 1 as orange symbols in
fig. 9, exhibits a larger average velocity when it becomes
stiffer. The velocity of a very small particle with R̃ = 0.2,
cyan symbols in fig. 9, only weakly depends on the par-
ticle rigidity. The diffusivity, shown in fig. 9(b), for large
particles decreases as a function of the rigidity and smaller
particles display slightly increasing diffusivity when they
become stiffer.

With respect to nanoparticle transport into hair fol-
licles, the case of particles that are of the same size as
the distance between hair and follicle surfaces is proba-
bly the most relevant. Hence, we conclude that in terms
of directed transport and diffusion, flexible particles are
expected to penetrate deeper into the hair follicle, an ob-
servation that is consistent with experiments comparing
follicular penetration of rigid and flexible liposomes [28].

4 Summary and conclusion

In the present study, Brownian dynamics simulations are
employed to obtain average velocities and diffusivities for
the motion of a nanoparticle in a two-dimensional channel,
where one of the two corrugated channel surfaces is oscil-
lating. For simplicity, we only consider pure perpendicular
motion and pure parallel motion of the oscillating surface,
more realistic scenarios might involve a superposition of
both modes of motion.

The perpendicular motion causes a flashing ratchet
effect that rectifies the particle motion to the right, i.e.
down the shallow flank of the oscillating surface. We de-
termine the optimal driving frequency, the optimal par-
ticle size, and the optimal corrugation amplitude of the
oscillating surface that yield the most efficient particle
transport. In particular, particles exhibit maximal veloc-
ity when the surface separation roughly corresponds to the
particle size and the corrugation amplitude corresponds to
half the surface separation. The surface structure of the
resting channel surface has a minor effect on the frequency
dependence of the average velocity, but the diffusivity is
much larger for the flat structure compared to corrugated
surfaces because less confinement allows for more space for
the particle to diffuse. Consequently, the optimal particle
size is smaller for the flat resting surface structure.

Besides the directed transport mechanism, we also find
enhanced diffusive motion induced by the perpendicular
ratchet motion. We determine the crossover from the diffu-
sive regime to the regime where directed transport dom-
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inates. Since this crossover occurs for intermediate fre-
quencies at a transport length of only l∗ ≈ 5L, where L is
the periodicity of the oscillating surface, we conclude that
for typical transport applications, i.e. l � L, the directed
transport mechanism is more important than diffusion.

Parallel motion of the oscillating surface induces a dis-
tinct transport mechanism that we describe as pushing
ratchet effect, which leads to directed particle motion to
the left, i.e. in the opposite direction compared to per-
pendicular ratchet motion. This effect is most pronounced
for the flat structure of the resting surface, leading to
large negative velocities. In addition, we observe a sig-
nificant enhancement of the diffusivities, which becomes
even larger than for free diffusion. To what extent this dif-
fusivity enhancement dominates compared to the directed
transport depends on the total distance the particle has
to move.

Elasticity of particles is included in the last part and
we determine the transport properties for perpendicular
ratchet motion. For a small channel surface separation and
comparable particle size, we find that elastic particles ex-
hibit larger velocities and diffusivities compared to rigid
particles. This behavior changes when the particle size be-
comes smaller: small elastic particles show less efficient
transport than small rigid particles. The non-monotonic
behavior of the average velocity as a function of rigidity
for large surface separation indicates a complex interplay
between rigidity and other model parameters.

Financial support from the DFG Collaborative Research Cen-
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Büttemeyer, Manfred Liebsch, Michael Linscheid, Alfred
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