About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Latest news
EPJ A Highlight - Modern three-body forces make neutron stars collapse
Friday, 08 August 2014 09:38
Density profile of the collapsed state of 10000 neutrons in the X-Y-plane along the symmetry axis Z=0 (schematic illustration). Polarized neutrons, which interact through incorrect three-body forces, concentrate in small spheres separated by 0.9 fermi. © Dmitry K. Gridnev et al.

Nuclear systems ranging from light nuclei to massive neutron stars can be well described by nucleons interacting through two-body and three-body forces. From electrostatics we know that two identical uniformly charged spheres repel at any distance but the repulsion disappears when the spheres completely overlap. Similarly, in some modern expressions of nuclear three-body force it is assumed that the nuclear repulsion between the three nucleons is zero when they occupy the same position in space.

Read more...
 
EPJ B Highlight - Nano-pea pod model widens applications
Thursday, 31 July 2014 16:30
The dependence of the continuous spectrum on the connecting wires’ length. © Eremin et al.

A new theoretical model outlines the conditions under which a novel nanostructure, such as the nano-pea pod, can exhibit localised electrons for electronics applications

Periodic chain-like nanostructures are widely used in nanoelectronics. Typically, chain elements include the likes of quantum rings, quantum dots, or quantum graphs. Such a structure enables electrons to move along the chain, in theory, indefinitely. The trouble is that some applications require localised electrons - these are no longer in a continuous energy spectrum but in a discrete energy spectrum, instead. Now, a new study by Russian scientists identifies ways of disturbing the periodicity of a model nanostructure to obtain the desired discrete spectrum with localised electrons. These findings have been published in EPJ B by Dr. Eremin from the Mordovian State University, in Saransk, Russia and colleagues.

Read more...
 
EPJ B Highlight - Inter-dependent networks stress test
Thursday, 31 July 2014 16:00
Impact of network topologies. © Fu et al.

A new study relies on a complex systems modelling approach, known as graph theory, to analyze inter-dependent physical or social networks and improve their reliability in the event of failure

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network - including water for cooling, transport to supply fuel, and ICT systems for control and management. Every step in the network chain is interconnected with a wider network and they are all mutually dependent. A team of UK-based scientists has studied various aspects of inter-network dependencies, not previously explored. The findings have been published in EPJ B by Gaihua Fu from Newcastle University, UK, and colleagues. These findings could have implications for maximising the reliability of such networks when facing natural and man-made hazards.

Read more...