About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.


Latest news
EPJ B Highlight - Grasp of SQUIDs dynamics facilitates eavesdropping
Tuesday, 08 April 2014 09:29
Average voltage output of a DC SQUID under varying conditions. © Berggren et al.

Latest theoretical advances pertaining to the dynamics of highly sensitive magnetometers could find military applications in low-noise amplifiers and sensitive antennas

Theoretical physicists are currently exploring the dynamics of a very unusual kind of device called a SQUID. This Superconducting Quantum Interference Device is a highly sensitive magnetometer used to measure extremely subtle magnetic fields. It is made of two thin regions of insulating material that separate two superconductors – referred to as Josephson junctions – placed in parallel into a ring of superconducting material. In a study published in EPJ B, US scientists have focused on finding an analytical approximation to the theoretical equations that govern the dynamics of an array of SQUIDs. This work was performed by Susan Berggren from the US Navy research lab, SPAWAR Systems Center Pacific, in San Diego, CA, USA and Antonio Palacios San Diego State University. Its applications are mainly in the military sector, including SQUID array-based low-noise amplifiers and antennas.

EPJ E - Andreas Bausch, the new biological physics EiC
Monday, 07 April 2014 16:01

This month EPJE welcomes Andreas Bausch, who takes over from Frank Jülicher, as Editor in Chief for biological physics in EPJ E – Soft Matter and Biological Physics. In his lab, Bausch applies new experimental tools of soft condensed matter physics to living cells and bio-mimetic model systems. This is his vision for biological physics within EPJE in the years to come:

EPJ B Highlight - Graphene nanoribbons as electronic switches
Monday, 31 March 2014 12:32
© Credit: Dmitry Knorre/Fotolia

A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices

One of graphene’s most sought after properties is its high conductivity. Argentinian and Brazilian physicists have now successfully calculated the conditions of the transport, or conductance mechanisms, in graphene nanoribbons. The results, recently published in a paper in EPJ B, yield a clearer theoretical understanding of conductivity in graphene samples of finite size, which have applications in externally controlled electronic devices.