EPJ Plus Highlight  Simulations’ Achille’s heel
 Details
 Published on Sunday, 10 February 2013 20:05
What can go wrong when computer simulations are applied outside their original context
In an article just published in EPJ Plus, Daan Frenkel from the University of Cambridge, UK, outlines the many pitfalls associated with simulation methods such as Monte Carlo algorithms or other commonly used molecular dynamics approaches.
The context of this paper is the exponential development of computing power in the past 60 years, estimated to have increased by a factor of 10^{15}, in line with Moore’s law. Today, short simulations can reproduce a system the size of a bacterium.
The author outlines diverse examples of issues arising when seemingly simple simulation methods are not applied with the due level of care. For example, simulations of smallscale systems, such as cubic boxes representing a unit cell as part of a crystal or liquid crystal, display effects that are linked to the fact that the sample is of finite size. Therefore, these simulations can only imitate, not reproduce, macroscopic effects unless effects that occur at microscopic scale, such as surface effects, are effectively removed. This is typically done by using periodic repetition of a small system in all directions.
Frenkel also focuses on methods that, at first blush, appear reasonable, but are flawed and are akin to attempting to compare apples and oranges. For example, computing a mechanical property of a system—say the potential energy—using a Monte Carlo simulation, which can be based on thermal averages, does not allow us to compute the thermal properties of such a system—such as entropy—in terms of thermal averages. Finally, the article also takes great care to debunk common myths and misconceptions pertaining to simulations, for instance, newer simulation methods are not necessarily better than older ones.
Simulations: The dark side. D. Frenkel (2013), Eur. Phys. J. Plus DOI 10.1140/epjp/i2013130108
Open calls for papers

EPJ D Special Issue: Relativistic Laser Plasma Interactions

EPJ B Special Issue: Continuous Time Random Walk fifty years on

EPJ D Special Issue: Physics of Ionized Gases

EPJ D Special issue: Dynamics of Systems on the Nanoscale

EPJ D Special issue: Theory and Applications of the LugiatoLefever Equation

EPJ D Topical Issue: Dynamics of Molecular Systems

EPJ ST Special Issue: New perspectives on complex systems

EPJ Quantum Technology: Thematic Series on Space Applications of Quantum Technology

EPJ Techniques and Instrumentation: Thematic Series on Novel Plasma Diagnostics