About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Latest news
EPJ D Colloquium - One Hundred Years of the Franck-Hertz Experiment
Monday, 21 July 2014 00:00
Schematic representation of the Franck-Hertz experiment © Robson et al.

The seminal 1914 experiment of James Franck and Gustav Hertz provided a graphic demonstration of the quantisation properties of atoms, and thereby laid the foundations of modern atomic physics. This EPJ D colloquium revisits the experiment on the occasion of its Centenary and compares the traditional and modern interpretations, as well as highlighting the link between microscopic processes, which are governed by the laws of quantum mechanics, and macroscopic phenomena, as observed in the laboratory.

Read more...
 
EPJ D Topical Review - Gas breakdown and secondary electron yields
Thursday, 17 July 2014 00:00
Paschen curves for molecular gases © Marić et al.

In this EPJ D topical review, the authors present a systematic study of gas breakdown potentials. An analysis of the key elementary processes involved in low-current low-pressure discharges is given, with the aim of illustrating how such discharges are used to determine swarm parameters and how such data may be applied to the modeling of discharges.

Read more...
 
EPJ B Highlight - Unleashing the power of quantum dot triplets
Tuesday, 08 July 2014 13:35
Triple quantum dot system. © S. B. Tooski et al.

Another step towards faster computers relies on three coherently coupled quantum dots used as quantum information units, which could ultimately enhance quantum computers’ speed

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, easily controlled by applying an electric field. A new study demonstrates that changing the coupling of three coherently coupled quantum dots (TQDs) with electrical impulses can help better control them. This has implications, for example, should TQDs be used as quantum information units, which would produce faster quantum computers due to the fact that they would be operated through electrical impulses. These findings have been published in EPJ B by Sahib Babaee Tooski and colleagues affiliated with both the Institute of Molecular Physics at the Polish Academy of Sciences, in Poznan, Poland, the University of Ljubljana and the Jožef Stefan Institute in Slovenia.

Read more...
 
Download EPJ 2014 calendar in PDF