About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Latest news
EPJ D Highlight - Atmospheric chemistry hinges on better physics model
Monday, 29 September 2014 14:06
Representations of a component of the wave packet of the N2O molecule during photoabsorption. © M. N. Daud

Improved theoretical model of photoabsorption of nitrous oxide matters because its by-product, nitric oxide, is involved in the catalytic destruction of stratospheric ozone

New theoretical physics models could help us better grasp the atmospheric chemistry of ozone depletion. Indeed, understanding photoabsorption of nitrous oxide (N2O)-- a process which involves the transfer of the energy of a photo to the molecule--matters because a small fraction of N2O reacts with oxygen atoms in the stratosphere to produce, among other things, nitric oxide (NO). The latter participates to the catalytic destruction of ozone (O3). Now, new theoretical work unveils the actual dynamic of the photoabsorption of nitrous oxide (N2O) molecules. These findings by Mohammad Noh Daud from the University of Malaya, Kuala Lumpur in Malaysia, have just been published in EPJ D. The work has led to new calculations of the probability of an absorption process taking place, also referred to as absorption cross section, which confirm experimental results.

Read more...
 
EPJ D Topical Review - Applied Bohmian Mechanics
Monday, 29 September 2014 13:42
Interaction of a hydrogen atom with a left-circularly polarized Laguerre-Gaussian beam
© A. Benseny et al.

Bohmian mechanics provides an explanation of quantum phenomena in terms of point particles guided by wave functions. This EPJ D review focuses on the formalism of non-relativistic Bohmian mechanics, rather than its interpretation, and although the Bohmian and standard quantum mechanical theories have different formalisms, they both yield exactly the same predictions for all phenomena.

Read more...
 
EPJ D Topical Review - The density matrix renormalization group for ab initio quantum chemistry
Thursday, 25 September 2014 00:00

Over the past 15 years, the density matrix renormalisation group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, viz. the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz, and can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions, and the DMRG therefore works extremely well for noncritical one-dimensional systems.

Read more...
 
Download EPJ 2014 calendar in PDF