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Abstract. Quantum theory is a well-defined local theory with a clear interpretation. No “measurement
problem” or any other foundational matters are waiting to be settled.

Quantum theory had essentially taken its final shape by
the end of the 1920s and, in the more than eighty years
since then, has been spectacularly successful and reliable
– there is no experimental fact, not a single one, that con-
tradicts a quantum-theoretical prediction. Yet, there is a
steady stream of publications that are motivated by al-
leged fundamental problems: We are told that quantum
theory is ill-defined, that its interpretation is unclear, that
it is nonlocal, that there is an unresolved “measurement
problem”, and so forth1.

It may, therefore, be worth reviewing what quantum
theory is and what it is about. While it is neither possible
nor desirable to cover the ground exhaustingly, we shall
deal with the central issues and answer questions such as
these:

– Is quantum theory well defined?
– Is the interpretation of quantum theory clear?
– Is quantum theory local?
– Is quantum evolution reversible?
– Do wave functions collapse?
– Is there instant action at a distance?
– Where is Heisenberg’s cut?
– Is Schrödinger’s cat half dead and half alive?
– Is there a “measurement problem”?

� In sincere gratitude for many instructive discussions, I ded-
icate this essay to Professor Rudolf Haag on the occasion of his
90th birthday.

a e-mail: cqtebg@nus.edu.sg
1 No references are given here or later; why point a finger

at a particular representative of one or the other community?
The pertinent essays in the 2009 Compendium of Quantum
Physics [1] cite the relevant papers. This no-finger-pointing
policy applies throughout the chapter. In particular, we note
that the quotes in (53), (60), (62), and (63) are not made up.
They are actual quotes from existing sources. The sources are
irrelevant, however, the quotes are representatives of many sim-
ilar statements.

1 Physical theories: phenomena, formalism,
interpretation; preexisting concepts

In physics, a theory has three defining constituents: the
physical phenomena, the mathematical formalism, and the
interpretation. The phenomena are the empirical evidence
about physical objects gathered by passive observation,
typical for astronomy and meteorology, or by active ex-
perimentation in the laboratory. The formalism provides
the adequate mathematical description of the phenomena
and enables the physicist to make precise quantitative pre-
dictions about the results of future experiments. The in-
terpretation is the link between the formalism and the
phenomena.

Each physical theory relies on preexisting concepts,
which reflect elementary experiences and without which
the theory could not be stated. In Newton’s classical me-
chanics [2], these concepts include mass and force, and the
theory deals with the motion of massive bodies under the
influence of forces. Classical mechanics cannot provide any
insight why there are masses and forces.

Likewise, electric charge is a preexisting concept in
Maxwell’s electromagnetism [3], which accounts for the
forces exerted by the electromagnetic field on charged bod-
ies and how, in turn, the charges and their currents give
rise to the electromagnetic field. Maxwell’s theory cannot
tell us why there are electricity and magnetism or why
there are charges and fields, nor is this the purpose of the
theory.

One preexisting concept of quantum theory is the
event, such as the emission of a photon by an atom, the ra-
dioactive decay of a nucleus, or the ionization of a molecule
in a bubble chamber. The formalism of quantum theory
has the power to predict the probabilities that the events
occur, whereby Born’s rule [4] is the link between formal-
ism and phenomenon. But an answer to the question Why
are there events? cannot be given by quantum theory.

In addition, there are preexisting concepts that are
common to all physical theories: the three-dimensional
space in which the natural phenomena happen, and the
time whose flow distinguishes the past from the future.
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We must also acknowledge a fundamental philosophical
concept of science – the conviction that it is possible, with
means accessible to the human mind, to give a systematic
account of the natural phenomena.

2 Events

The formalism of quantum theory can be used to predict
probabilities – probabilities for events. In the classic Stern-
Gerlach experiment [5]2, the silver atom eventually hits
the glass plate, and we can calculate the probability that
the next atom will land in a certain region. The hitting
of the glass plate is localized in space and time and has
an element of irreversibility, videlicet the emission of long-
wavelength photons during the violent deceleration of the
atom, which photons are irretrievably lost. Another ex-
ample of an event is the radioactive α-decay of a nucleus,
which is invariably accompanied by the bremsstrahlung
associated with the escaping α particle and the two now-
superfluous electrons that are left behind. Yet another ex-
ample is the absorption of a photon by a semiconductor
detector. These examples illustrate the defining features
of an event.

First, an event is well localized in space and time.
Haag [8] emphasized, and rightly so, that short-range in-
teractions are crucial for the localization of an event and
that events are linked by particles, so that a causal history
evolves – think, for instance, of the sequence of ionization
events in a bubble chamber. By their spatial-temporal re-
lations, the events give meaning to the space-time struc-
ture, the great stage for all natural phenomena.

Second, an event is irreversible, it leaves a document
behind, a definite trace. It has often been emphasized that
an amplification is necessary to bring the event to the
attention of the experimenter and that the amplification
is an irreversible process; this is true, but it downplays (or
even ignores) the irreversibility of the event itself, which
is independent of human observation. If you don’t have an
event in the first place, there is nothing you can amplify.
In the bubble chamber situation above, the amplification
turns the sequence of ionization events into a string of
bubbles that reveal the track of the charged particle to
the human eye.

Third, events are randomly realized. Before an event
occurs, there are usually several, perhaps many, different
events that could happen, each of them with a certain
probability of occurrence. Eventually, a definite one of the
possible events will be realized. We cannot predict which
one will be the case – because this is unknowable, not
because we are missing a crucial piece of information.

Quantum theory can be very helpful in understand-
ing quite a lot of the details of, say, the ionization of a
molecule by a charge that passes by. We can calculate,
with reasonable accuracy, the probability of ionization,

2 The accounts by Friedrich and Herschbach [6] and by
Bernstein [7] of this experiment’s history are recommended
reading.

the probability that the molecule gets energetically ex-
cited without being ionized and subsequently emits one or
more photons, and the probability that the molecule re-
mains unaffected by the charged particle. Whether the
ionization event happens or not, we cannot predict – the
principle of random realization (Haag in [9]) ensures that
the events do happen in accordance with their probabili-
ties of occurrence.

Born’s rule tells us these probabilities – the prob-
ability for the ionization event, the probability for the
photon-emission event, and the no-event probability for
the molecule remaining unaffected. For that to have any
meaning, the existence of events must be accepted in the
first place. In this sense, then, the event is a preexist-
ing concept of quantum theory. We cannot formulate the
theory without this concept.

3 Measurements, Born’s rule

3.1 An example

Consider the set-up sketched in Figure 1 where photons
are incident on a half-transparent mirror that serves as
a symmetric beam splitter (BS). Whether transmitted or
reflected, the photons then encounter a polarizing beam
splitter (PBS) that reflects vertically (V) polarized pho-
tons and transmits horizontally (H) polarized photons. For
simplicity, we assume that the BS is symmetric for all po-
larizations, so that the next photon to arrive has an equal
chance of being reflected or transmitted at the BS, irre-
spective of its polarization. The photons that are reflected
pass through a quarter-wave plate (QWP), which converts
right-handed (R) circular polarization to vertical polariza-
tion and left-handed (L) polarization to horizontal polar-
ization. The four detectors D1, . . . , D4 in the output ports
of the PBSs, therefore, distinguish between H and V polar-
ization or between R and L polarization of the incoming
photon.

The construction of the single-photon detector for a
particular outcome is largely irrelevant, except that its
efficiency depends on which physical process is used for
absorbing the photon and how the absorption event is
amplified to finally make the detector “click”. With pho-
tons arriving one by one, separated in time by more than
the dead-time of the detectors, the measurement result
consists of a sequence of detector clicks. Quantum theory
cannot predict which sequence will be recorded for the
next, say, one hundred photons but, for the next photon
to arrive, it tells us reliably the probability of clicking for
each detector, provided we know the polarization of this
incoming photon.

Which one of the four detectors will be triggered by the
next photon, which one of the four possible events will be
the actual one, this is not just unknown, it is unknowable.
One of the events will be randomly realized.

That quantum theory cannot predict which detector
will click for the next photon, does not imply that quan-
tum theory is incomplete. There is nothing missing; it
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Fig. 1. A four-outcome measurement of photon polarization.
An incident photon has equal chance of transmission or reflec-
tion at the beam splitter (BS). The polarizing beam splitters
(PBS) reflect vertically polarized photons and transmit hori-
zontally polarized photons. Photons transmitted at the BS are
probed for horizontal (H) and vertical (V) polarization and de-
tected by detectors D1 and D2, respectively. The combination
of quarter-wave plate (QWP) and PBS probes the photons re-
flected at the BS for right-handed (R) or left-handed (L) circular
polarization, with respective detectors D3 and D4.

is not possible to add further elements to the quantum-
theoretical formalism or its interpretation and then have
the power of making such predictions. There are no con-
sistent modifications of quantum theory that will achieve
this without getting wrong predictions in other situations.
The question Can Quantum-Mechanical Description of
Physical Reality be Considered Complete? that Einstein,
Podolsky, and Rosen asked in 1935 [10]3 has a clear an-
swer: Yes, quantum theory gives a complete description of
the phenomena. Bohr’s reply [12,13]4 hit the mark.

In the experiment of Figure 1, it is in fact impossible
to prepare the photon such that a particular detector will
certainly click. Yes, we can make sure that one of the de-
tectors will not click – H-polarized photons will never give
rise to a click of D2, for instance, but then the photon
has probabilities of 1

2 , 1
4 , 1

4 of entering one of the other
three detectors. Of course, what we have here is just an
example of the fundamental probabilistic nature of quan-
tum processes – an illustration of the principle of random
realization at work.

It should be noted that the reflection or transmission
of the photon at the BS does not constitute an event. The
photon needs a short-range interaction with a partner to
give rise to an event. If no such partner is available, we
could complete a Mach-Zehnder interferometer by adding
mirrors and another BS, after which it would be unknow-
able if the exiting photon was reflected or transmitted at
the BSs.

3.2 Mathematical description

We represent the kets for the polarization state of a pho-
ton by two-component columns, for which we use these

3 Reprinted in [11].
4 Reference [13] reprinted, with pages in wrong order, in [11].

conventions:

|V〉 =̂
(

1
0

)
, |H〉 =̂

(
0
1

)
,

|R〉 =̂ 1√
2

(
1
i

)
, |L〉 =̂ 1√

2

(
i
1

)
. (1)

Accordingly, the statistical operator for the polarization
degree of freedom for the incoming photon is represented
by a 2× 2 matrix,

ρ =
( |V〉 |H〉 )( ρVV ρVH

ρ
HV
ρ

HH

)( 〈V|
〈H|

)
=̂

(
ρVV ρVH

ρ
HV
ρ

HH

)
, (2)

and the probability that detector D1 will click for the next
photon is

p1 =
1
2
η1ρHH

=
1
2
η1〈H|ρ|H〉 = tr{ρΠ1} (3)

with the probability operator

Π1 = |H〉1
2
η1〈H| =̂ 1

2
η1

(
0 0
0 1

)
. (4)

Here, the factor of 1
2 is the transmission probability of the

BS and η1 is the detection efficiency of D1, the conditional
probability that a click is triggered by an incident photon.

Similarly, the probability operators for the other three
detectors are5

Π2 = |V〉1
2
η2〈V| =̂ 1

2
η2

(
1 0
0 0

)
,

Π3 = |R〉1
2
η3〈R| =̂ 1

4
η3

(
1 −i
i 1

)
,

Π4 = |L〉1
2
η4〈L| =̂ 1

4
η4

(
1 i
−i 1

)
. (5)

These need to be supplemented by the probability op-
erator Π0 for the possibility that the photon escapes
detection (no click),

Π0 = 1− (Π1 +Π2 +Π3 +Π4), (6)

to make up the probability-operator measurement
(POM6) for the set-up of Figure 1.

With the probability operators Πk at hand, the
respective probabilities pk are obtained by Born’s rule,

pk = tr{ρΠk}. (7)

5 For simplicity, we ignore here and in (3) the possibility of
“dark counts” – spontaneous detector clicks not triggered by
an incident photon.

6 POM, with its emphasis on “probability” and “measure-
ment”, is preferable quantum physics jargon. The mathemati-
cal term POVM (positive-operator-valued measure) makes ref-
erence to measure theory. Note that “theory” here identifies
a mathematical discipline and does not have the meaning of
Section 1.
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Fig. 2. A generic measurement. A physical object (photon,
electron, atom, molecule, . . . ), whose relevant quantum degrees
of freedom are described by the statistical operator ρ, enters
the measurement apparatus and triggers a click of one of the
K detectors D1, D2, . . . , DK , or it escapes detection (no click).

As already noted in Section 1 above, Born’s rule is a defin-
ing element of the interpretation of quantum theory, it
links symbols of the mathematical formalism with the phe-
nomenology: The statistical operator, which summarizes
what we know about the polarization state of the incoming
photon, and the probability operator, which represents the
apparatus, with the probability of a detector click, which
we can determine in an experiment by observing suffi-
ciently many repetitions of the situation “single incident
photon triggers a detector click”.

3.3 Generic measurements

The particular example of Figure 1 illustrates the gen-
eral measurement scenario. Let us briefly recall the generic
properties of a measurement in the quantum realm, as de-
picted in Figure 2. The relevant degrees of freedom of the
quantum system are described by the statistical opera-
tor ρ, and the K outcomes of the POM have probability
operators Π1, Π2, . . . , ΠK .

The statistical operator is positive and normalized to
unit trace,

ρ ≥ 0, tr{ρ} = 1, (8)

and the probability operators are positive and have unit
sum,

Πk ≥ 0,
K∑

k=0

Πk = 1, (9)

where we include Π0, the probability operator for the “no
click” case. The probability that the kth detector clicks
is given by Born’s rule (7), which also applies for the no-
click probability p0. As a basic check of consistency, one
can verify without effort that the probabilities are positive
and have unit sum,

pk ≥ 0,
K∑

k=0

pk = 1. (10)

The probabilities pk are conditional probabilities – they
are conditioned on what we know about the physical sys-
tem, which information is encoded in the statistical opera-
tor that we use for our probabilistic predictions. Someone
else may have different knowledge about the system and,

therefore, use a different statistical operator and arrive at
different values of the probabilities pk. Yet, her predic-
tions and ours, though different, will both be correct and
verifiable.

4 Statistical operators

4.1 Mixtures, blends, and as-if realities

The general form of a statistical operator for the polariza-
tion degree of freedom of a photon is given in (2), where
the matrix elements are restricted by

ρ
AB

= ρ
BA

∗ for A, B = H, V,

ρ
VV

+ ρ
HH

= 1, and ρ
VV
ρ

HH
≥ ρ

VH
ρ

HV
. (11)

Let us consider a ρ with a positive nonmaximal
determinant,

1
4
> det {ρ} = ρVVρHH − ρVHρHV > 0, (12)

so that the polarization state is impure (ρ2 �= ρ) and ρ has
the two positive eigenvalues

r1
r2

}
=

1
2
± 1

2

√
1− 4 det {ρ} , 1 > r1 > r2 > 0. (13)

The rank-one projectors to the respective eigenspaces are

|r1〉〈r1| = ρ− r2
r1 − r2 and |r2〉〈r2| = r1 − ρ

r1 − r2 , (14)

and
ρ = |r1〉r1〈r1|+ |r2〉r2〈r2| (15)

is the spectral decomposition of ρ.
If ρ refers to a large ensemble of photons, we could say

that it is as if ρ came about by having fractions r1 and
r2 of photons in the polarization states associated with
kets |r1〉 and |r2〉, respectively. Speaking of the one pho-
ton of interest, regarded as the representative of a Gibbs
ensemble of photons, it is as if that photon had respective
chances r1 and r2 of being of the |r1〉 or |r2〉 kind. This is
but one of very many as-if realities for the one statistical
operator ρ. For example, we can also write

ρ = |r+〉12 〈r+|+ |r−〉
1
2
〈r−| (16)

with
|r±〉 = |r1〉√r1 ± |r2〉√r2. (17)

Now it is as if the photon had equal chances of being in
the polarization states for kets |r+〉 and |r−〉. Hereby, each
choice for the relative phase between |r1〉 and |r2〉, when
factoring the projectors in (14) into ket-bra products, gives
different r± kets in (17) and, therefore, different projectors
on the right-hand side of (16) and a different as-if reality to
go with them. Any convex sum of (15) and (16) identifies
yet another as-if reality.
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We have the same mixed state ρ, the same mixture, and
different blends for it7, each of them offering a different
as-if reality. All that matters is the mixture, not how it
is blended as a convex sum of pure states. Born’s rule (7)
makes no reference to the blend and its as-if reality, it only
cares about the mixture ρ. There is no way of distinguish-
ing between the different blends of (15) and (16) or of their
many convex sums; no experiment can tell whether this as-
if reality or that one is “what really is the case”. Attempts
at discriminating between blends founder on fundamental
principles, such as Einsteinian causality [15,16]. All ways
of blending a mixture are equally good, all as-if realities
are equally virtual. In particular, the spectral decomposi-
tion in (15) and the as-if reality associated with it have
no special significance.

Of course, these observations about mixtures, blends,
and as-if realities – here illustrated in the simple context
of photon polarization – carry over to more general situa-
tions. Whenever the statistical operator is not a rank-one
projector, there will be a plethora of blends for that mix-
ture and a corresponding abundance of as-if realities.

4.2 Purification

A mixture that is blended from J rank-one ingredients,

ρ =
J∑

j=1

|aj〉wj〈aj | =
J∑

j,j′=1

|aj〉√wj δj,j′
√
wj′ 〈aj′ | (18)

with positive weights of unit sum (wj > 0,
∑

j wj = 1),
can be written as the partial trace of a rank-one projector
of a bipartite system,

ρ = tr2
{| 〉〈 |} (19)

with

| 〉 =
J∑

j=1

|aj bj〉√wj , (20)

where the b kets are orthonormal, 〈bj|bj′〉 = δj,j′ . Since
the blend that we start with in (18) is not unique and any
orthonormal set of b kets of any auxiliary second system
will serve the purpose, there are many different ket-bras
| 〉〈 | that one can use in (19) equally well.

In particular situations, such as the one discussed in
Section 7, we are really dealing with a bipartite system in
a pure state (or nearly so), and then a physically meaning-
ful ket | 〉 may be available. In the generic case, however,
we have our statistical operator ρ for the physical system
of interest and the purification of (19) with (20) is just a
mathematical procedure that might be helpful in perform-
ing a certain calculation but has no physical significance
whatsoever.

Yet, the “church of the larger Hilbert space” offers
membership to those who believe that there is always such

7 We are adopting Süßmann’s fitting terminology who distin-
guishes between Gemisch (mixture) and Gemenge (blend) [14].

a larger physical system in a pure state. Now, it is already
quite challenging to acquire sufficient information about a
few degrees of freedom to justify, as a good approximation,
the use of a rank-one projector as the statistical operator.
How, then, can we have a pure state for the unknown de-
grees of freedom of a fictitious larger system that exists
only in our fantasy? Of course, we cannot.

It appears that sloppy language is one source of this
misconception. One often speaks of “the wave function
of the electron” or “the statistical operator of the pho-
ton” rather than “our wave function for the electron”
or “our statistical operator for the photon”. The precise
“our . . . for” phrases leave no doubt that we are describing
the electron by this wave function or the photon by that
statistical operator, whereas the sloppy “the . . . of” word-
ings wrongly suggest an independent existence of the wave
function or the statistical operator. When this suggestion
is taken seriously, the church gates stand wide open.

Is there not the one largest system, the universe, with
the physical system of interest as a small part of it? Yes,
there is the universe, but no-one has a wave function for
the universe, and there is no wave function of the universe.

5 Evolution

5.1 Equations of motion

In Born’s rule (7), both the statistical operator ρ and
the probability operator Πk are functions of the dy-
namical variables – collectively symbolized by Z(t) –
with, possibly, a parametric time dependence as well. All
such operator-valued functions evolve in accordance with
Heisenberg’s equation of motion,

d
dt
f
(
Z(t), t

)
=

∂

∂t
f
(
Z(t), t

)
+

1
i�

[
f
(
Z(t), t

)
, H

(
Z(t), t

)]
,

(21)
the quantum analog of Hamilton’s equation of motion for
phase-space functions. In (21), H

(
Z(t), t

)
is the Hamilton

operator, itself a function of this kind, and the commu-
tator term accounts for the dynamical time dependence
of f

(
Z(t), t

)
. Whereas Πk and H may or may not have

a parametric time dependence, the parametric time de-
pendence of the statistical operator compensates for its
dynamical time dependence because ρ is constant,

d
dt
ρ
(
Z(t), t

)
= 0,

∂

∂t
ρ
(
Z(t), t

)
=

1
i�

[
H

(
Z(t), t

)
, ρ

(
Z(t), t

)]
. (22)

The latter equation, really a special case of (21), is known
as von Neumann’s equation of motion, the quantum analog
of Liouville’s equation of motion for phase-space densities.

Since the von Neumann equation concerns solely the
parametric time dependence of ρ, it does not matter to
which common time t0 the dynamical operators refer,

∂

∂t
ρ
(
Z(t0), t

)
=

1
i�

[
H

(
Z(t0), t

)
, ρ

(
Z(t0), t

)]
, (23)
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and since a unitary transformation relates the dynamical
operators at time t to those at time t0, we also have

pk(t) = tr
{
Πk

(
Z(t), t

)
ρ
(
Z(t), t

)}
= tr

{
Πk

(
Z(t0), t

)
ρ
(
Z(t0), t

)}
. (24)

According to standard terminology, these two expres-
sions for pk(t) are “in the Heisenberg picture” and “in
the Schrödinger picture”, respectively. The central von
Neumann equation in (22) or (23), however, is picture
independent. The parametric time dependence of the sta-
tistical operator is what it is.

The product Πkρ is also an operator that obeys
Heisenberg’s equation of motion (21), and the two ver-
sions of (24) give

d
dt
pk(t) = tr

{
d
dt

(Πkρ)
}

= tr
{
∂

∂t
(Πkρ)

}
(25)

for the time derivative of the kth probability. The differ-
ence of the two traces is the vanishing trace of the com-
mutator of Πkρ with the Hamilton operator. In this sense,
then, the Heisenberg picture pays attention to the full time
dependence, whereas the Schrödinger picture cares only
about the parametric time dependence. This is particu-
larly well visible when the probability operator Πk has no
parametric time dependence (the same set-up is used at
different times), so that (25) becomes

d
dt
pk(t) = tr

{
dΠk

dt
ρ

}
= tr

{
Πk

∂ρ

∂t

}
(26)

after the product rule is applied,

d
dt

(Πkρ) =
dΠk

dt
ρ,

∂

∂t
(Πkρ) = Πk

∂ρ

∂t
. (27)

The first of these statements is an identity that is generally
valid, the second holds only when ∂

∂t
Πk = 0.

If we denote by 〈a, t| the common eigenbras of a max-
imal set A(t) of commuting dynamical variables, a subset
of the collection Z(t), with a symbolizing the set of eigen-
values, 〈a, t|A(t) = a〈a, t|, then we have the Schrödinger
equation

i�
∂

∂t
〈a, t| = 〈a, t|H(

Z(t), t
)

(28)

for the relation between 〈a, t+ dt| and 〈a, t|. The matrix
elements of a rank-one statistical operator, ρ = | 〉〈 |, in
this a basis,

〈a, t|ρ|a′, t〉 = ψ(a, t)ψ(a′, t)∗, (29)

are products of the probability amplitudes

ψ(a, t) = 〈a, t| 〉 (30)

and their complex conjugates. The von Neumann
equation (22) is then equivalent to

i�
∂

∂t
ψ(a, t) =

∑
a′
〈a, t|H(

Z(t), t
)|a′, t〉ψ(a′, t) (31)

or

i�
∂

∂t
Ψ(t) = HΨ(t), (32)

if we collect the probability amplitudes ψ(a, t) in the col-
umn Ψ(t), the wave function, and the matrix elements of
H in the matrix H. The corresponding matrix version of
the von Neumann equation itself is then

∂

∂t

 =

1
i�

[H, 
], (33)

where 
 = ΨΨ † is the matrix that represents the statistical
operator ρ = | 〉〈 |. Of course, (32) is the most familiar
version of the Schrödinger equation, as it applies to a wave
function.

Expressions such as (29) may convey the false impres-
sion that the statistical operator depends on time. Yes,
its matrix elements do depend on time, whereas we have
d

dt
ρ = 0 for the time dependence of ρ. It is the time-

dependent basis of bras that gives time dependence to the
wave function in (30), whereas the state ket | 〉 is time
independent. In

| 〉 =
∑

a

|a, t〉ψ(a, t) =
∑
a′
|a′, t′〉ψ(a′, t′), (34)

which holds for any time t or t′, the basis kets |a, t〉 and
|a′, t′〉 as well as the probability amplitudes ψ(a, t) and
ψ(a′, t′) change in time, but | 〉 does not. This is, of course,
as it should be because ρ = | 〉〈 | represents our knowl-
edge about the preparation of the system and that makes
reference to some definite instant in the past when this
knowledge was acquired.

In passing, we note that some textbook authors have
failed to distinguish clearly between the state ket | 〉
(an abstract object) and its wave function Ψ (a basis-
dependent numerical representation of | 〉), between the
Hamilton operator H and its matrix H, and between
the statistical operator ρ and its matrix 
. In their
books, then, (32) is written as i� ∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉,

as if there were a time-dependent state ket |Ψ(t)〉 that
obeys a Schrödinger equation. As a consequence, it then
seems that we have a time-dependent statistical operator
ρ = |Ψ(t)〉〈Ψ(t)| although, in fact, ρ is constant. The re-
lated failure of distinguishing between the total and the
parametric time dependence then gives rise to the mis-
leading statement that equations such as (26) demonstrate
that “in the Schrödinger picture ρ depends on time and
Πk is constant, whereas ρ is constant and Πk depends on
time in the Heisenberg picture” and the like.

5.2 Time-reversal symmetry and irreversible evolution8

Let us consider the Schrödinger equation for the position
wave function of a particle of mass M that moves along
the x axis under the influence of the forces associated with
the potential energy V (x),(

∂

∂t
+ iΩ

)
ψ(x, t) = 0, (35)

8 This section follows [17] closely.
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where the differential operator Ω is given by

�Ω =
1

2M

(
�

i
∂

∂x

)2

+ V (x) > 0. (36)

Here, for simplicity, the physical requirement that the en-
ergy is bounded from below is equivalently replaced by
insisting on the positivity of Ω. The time-reversed wave
function

(ΘTψ)(x, t) = ψ(x, 2T − t)∗ (37)
is also a solution of the Schrödinger equation (35),(

∂

∂t
+ iΩ

)
ψ(x, 2T − t)∗ = 0. (38)

This time-reversal symmetry of the Schrödinger equation
does not imply, however, that quantum evolution is re-
versible.

One can imagine the undoing of all changes in ψ(x, t)
that have occurred between, say, t = 0 and t = T by first
applying ΘT , followed by evolution under the same dy-
namics for T < t < 2T , and final application of Θ2T , so
that an instant τ after t = 2T one has the same wave
function as at time t = τ , that is

ψ(x, 2T + τ) = e−iΩτΘ2T e−iΩTΘT e−iΩTψ(x, 0)

= ψ(x, τ) = e−iΩτψ(x, 0) (39)

for all x. But this cannot be achieved in any real sense.
The changes symbolized by ΘT andΘ2T must be of dy-

namical origin themselves, which they cannot be because
these operators are not unitary; they are anti-unitary,

ΘT (λ1ψ1 + λ2ψ2) = λ∗1ΘTψ1 + λ∗2 ΘTψ2. (40)

It is true that all that matters is the product

Θ2T e−iΩTΘT = eiΩT , (41)

and this is unitary. But for most Ω the right-hand side is

not of the form e−iΩ̃T with a physical, positive Ω̃. It fol-
lows that the undoing of all evolutionary changes is impos-
sible, at least if one just wants to exploit the time-reversal
symmetry of the Schrödinger equation.

A more general scheme, not so tightly bound to ele-
mentary nonrelativistic quantum mechanics, is what one
could call the Humpty-Dumpty problem, which name refers
to the rhymed riddle (solution: egg) that succinctly ex-
presses folk wisdom about irreversibility9. Here, then,
is the

Humpty-Dumpty problem
Given a statistical operator ρ and a Hamilton
operator H1(t) > 0, acting from t = 0 to
t = T , find T̃ andH2(t) > 0, acting from t = T

to t = T̃ , such that the unitary evolution
operators U(T, 0) and U(T̃ , T ), constructed
as time-ordered exponentials from H1(t) and
H2(t), respectively, give an over-all evolution
operator U(T̃ , 0) = U(T̃ , T )U(T, 0) that has
no effect on ρ: U(T̃ , 0) ρ = ρU(T̃ , 0).10

(42)

9 You can find the riddle in [18].

A solution is found when we have

U(T̃ , T )† = exp

⎛
⎜⎝+

i
�

T̃∫
T

dtH2(t)

⎞
⎟⎠

<

=̇ exp

⎛
⎜⎝− i

�

T∫
0

dtH1(t)

⎞
⎟⎠

>

= U(T, 0) (43)

with standard time ordering in the second line and the
reverse order in the first, and the dotted equal sign means
“same effect on ρ ”, that is

U(T̃ , T )† ρU(T̃ , T ) = U(T, 0) ρU(T, 0)†. (44)

In view of the positivity of both H1(t) and H2(t) this
can only be realized under exceptional circumstances. The
question is then: For which ρ and H1(t) is it possible at
all? There are, of course, two very important rules in this
game, namely

(a) only real physical interactions are
considered;

(b) over-idealizations are not allowed. (45)

It can safely be conjectured that for generic statistical
operators ρ and Hamilton operators H1(t), the Humpty-
Dumpty problem has no solution. The examples of Sec-
tion 2 are to the point.

Maybe part of the evolutionary changes can be un-
done at least? Consistent with rule (45a) we ask more
specifically: Can the two partial beams of a Stern-Gerlach
apparatus (SGA) be reunited with such precision that the
initial spin state is recovered? That is, we make no at-
tempt at undoing in full the changes in the center-of-mass
state of the atom. References [18,19] deal with the details
of such a Stern-Gerlach interferometer; it is found that
one needs three more SGAs for the beam reunion. Ideally,
the four SGAs would be perfectly identical. With due re-
spect to rule (45b), however, we have to ask how large a
mismatch between the SGAs can be tolerated.

Two relevant quantities are the net transverse mo-
mentum transferred to either partial beam and their net
transverse displacement, respectively measured by

Δp =
∫

dt F (t) and Δz = −
∫

dt F (t)
t

M
, (46)

where F (t) is the force on the up-component, for instance,
produced by the inhomogeneity of the magnetic field.
Thus, Δp and Δz are properties of the macroscopic SGAs;
the deviations from the ideal values Δp = 0, Δz = 0 are
10 More generally, one could also consider ancilla-assisted evo-
lution between T and T̃ , so that the net effect on ρ would
come from a completely positive map that may not be describ-
able by a single unitary operator U(T̃ , T ). The main conclusion
that, as a rule, quantum evolution is irreversible is not affected,
however.
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resulting from the lack of control over the SGAs. It turns
out that to maintain spin coherence one must, at least,
ensure that (

δz Δp/�
)2 +

(
δpΔz/�

)2 � 1 (47)

holds, where δz and δp are the natural spreads of the beam
prior to entering the first SGA. Therefore, one can toler-
ate only such variations in the magnetic field that both
Δz � �/δp and Δp � �/δz, with the consequence

Δz Δp

�
� �

δz δp
. (48)

This states that the macroscopic magnetic field must be
controlled with sub-microscopic precision – an impossible
feat. The spin state is so severely affected by the inho-
mogeneous magnetic field of the first SGA that it shares
Humpty Dumpty’s fate: One cannot undo the damage.

6 State reduction

Our statistical operator ρ represents our knowledge about
the preparation of the system, and this knowledge does
not change until we acquire additional information. When
that happens, we must update the statistical operator to
account for the change in the conditions under which we
predict the results of future experiments. State reduction
is the technical term for this updating.

State reduction is not particular to quantum theory, it
is part and parcel of all statistical formalisms. Bookmakers
know about state reduction, even if they never heard the
term and have not studied quantum theory.

Here is an example from the world of chess, show-
ing two cases of state reduction11: After eleven rounds of
the 2013 candidates tournament in London that would
determine the challenger of world champion Anand, a
prediction based on past results among the participants,
their ratings, and perhaps other data gave a chance
of 87% to Carlsen to win the competition, a chance of 7%
to Kramnik, and a chance of 6% to Aronian. In the
twelfth round, Carlsen lost against Ivanchuk and Kramnik
won against Aronian, which resulted in updated chances
of 65% for Kramnik and 35% for Carlsen, with Aronian
out of the race. Then, in the thirteenth round, Carlsen
won against Radjabov and Kramnik drew his game with
Gelfand, and the probabilities for winning the tournament
became 84% for Carlsen and 16% for Kramnik. The highly
improbable happened in the final fourteenth round: Both
Carlsen and Kramnik lost against Svidler and Ivanchuk,
respectively, and Carlsen took first place.

After the kth detector of a POM clicked, we update
the statistical operator in accordance with

ρ→ KkρK
†
k

pk
, (49)

11 This is a slightly simplified account; for more details, see
the news items on www.chessbase.com, 29–31 March 2013.

where Kk is the appropriate Kraus operator [20] for the
probability operator Πk,

Πk = K†
kKk. (50)

Depending on how the POM is implemented, there can
be quite different Kraus operators for the probability op-
erator of interest. In the example of Section 3, we have

K1 = |vac〉
√
η1/2 〈H| (51)

for detector D1 and similar expressions for D2, D3, and
D4. Irrespective of which detector clicks, we get

ρ→ |vac〉〈vac| (52)

upon reducing the state, thereby correctly stating that
the photon has been absorbed and we are left with the “no
more photon” situation of the photon vacuum, symbolized
by the state ket |vac〉.

More complicated cases are possible, such as a sum
of several K†K terms instead of the single term in (50).
The folklore that “a measurement leaves the system in
the relevant eigenstate of the observable” applies only to
over-idealized projective measurements (meaning that the
Kks are pairwise orthogonal projectors). It is puzzling that
some textbook authors consider it good pedagogy to ele-
vate this folklore to an “axiom” of quantum theory.

“Collapse of the state” or “wave function collapse” are
popular synonyms for state reduction. The connotation
that the transition in (49) is a dramatic dynamical pro-
cess, as if the physical system were evolving, is clearly mis-
leading. The various mathematical models that, exactly
or approximately, accomplish the state reduction (49) as
a process in time result from a category mistake: The sta-
tistical operator is not a physical object or a property of a
physical object, it describes the object by encoding what
we know about it, and state reduction is the bookkeeping
device for updating the description. An electron carries its
mass and charge around, but not “its” statistical operator.
It is worth recalling here that different physicists may very
well use different, equally correct, statistical operators for
predictions about that same electron.

7 No action at a distance

Here is a quote from a recent news item:

“Quantum theory makes the distinctive pre-
diction that non-local correlations are instant:
for example, a measurement of the polariza-
tion of one of a pair of quantum-entangled pho-
tons should immediately set the polarization
of the other, no matter how far the photons
are apart, without either photon’s polarization
being in any way predetermined.”

(53)

In fact, quantum theory makes no such prediction. There
is no instant action at a distance.

The situation alluded to is of the kind depicted in Fig-
ure 3. A source of entangled photon pairs (SEPP) emits
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Fig. 3. A source of entangled photon pairs (SEPP) sends photon 1 of each pair to Alice’s laboratory and photon 2 to Bob’s
laboratory. Alice’s apparatus detects photon 1 before photon 2 reaches Bob’s apparatus.

correlated photons in pairs, with photon 1 sent to Alice
and photon 2 to Bob who, for the sake of the argument, is
assumed to be much farther away from the SEPP than she
is. For the purpose of this discussion, we allow ourselves
the idealization that the photon pairs are described by a
rank-one statistical operator, specifically

ρ1&2 = |eprb〉〈eprb| (54)

with an Einstein-Podolsky-Rosen [10] state ket in Bohm’s
version [21],

|eprb〉 = 1√
2

(|HV〉 − |VH〉) =
1√
2

(|RL〉 − |LR〉), (55)

where, for instance, the ket |HV〉 stands for “photon 1 is H-
polarized, photon 2 is V-polarized”. Alice and Bob measure
their respective photons by four-outcome POMs of the
construction shown in Figure 1, with her detector clicking
much earlier than his.

Bob’s statistical operator for photon 2 is that of a com-
pletely mixed polarization state,

ρ
(B)
2 = tr1{ρ1&2} =

1
2
(|H〉〈H|+ |V〉〈V|) =

1
2
(|R〉〈R|+ |L〉〈L|).

(56)
This is also Alice’s statistical operator for photon 2 prior
to measuring photon 1.

Now suppose Alice’s detector D1 clicks for photon 1.
Then, her reduced state for the photon pair is:

ρ(A) = |vac V〉〈vac V|, (57)

meaning that really only photon 2 is left, and Alice’s up-
dated statistical operator for that photon is:

ρ
(A)
2 = tr1

{
ρ(A)

}
= |V〉〈V|. (58)

Has anything happened to photon 2 when Alice detected
photon 1 with her apparatus? Has “the measurement. . .
immediately set the polarization” of photon 2? Of course
not. The transition

1
2
(|H〉〈H|+ |V〉〈V|)→ |V〉〈V| (59)

is Alice’s bookkeeping, it is not a physical process that
photon 2 is undergoing, and it happens when she updates
her statistical operator.

Incidentally, we have here an example of the situation
mentioned twice above, at the end of Section 3.3 and at
the end of Section 6: Alice and Bob use different statistical
operators for predictions about photon 2, reflecting the

different knowledge they have about the situation. Alice
knows the outcome of the measurement on photon 1, Bob
does not. And we must not fall into the trap of concluding
that Alice’s statistical operator is better than Bob’s; both
her ρ(A)

2 and his ρ(B)
2 give correct statistical predictions, as

can be verified by many repetitions of the experiment12.
So, what about the quote (53)? It is another instance

of the category mistake noted in Section 6. A change in
Alice’s description of photon 2 is misunderstood as a phys-
ical process affecting photon 2, and then ex falso sequitur
quodlibet, namely the false assertion about instantaneous
nonlocal correlations, exemplified by the immediate set-
ting of the polarization of a photon that can be arbitrarily
far away.

8 No nonlocality

Nonlocal correlations are a familiar consequence of local
actions: A timing signal from a radio station synchronizes
clocks at large distances from each other. These nonlocal
correlations are clearly not instant; they have a common
local cause. But then there are claims that quantum sys-
tems can exhibit correlations of nonlocal origin.

Recall, for instance, the abstract of a recent paper,
which begins with these words:

“Bell’s 1964 theorem, which states that the
predictions of quantum theory cannot be ac-
counted for by any local theory, represents
one of the most profound developments in the
foundations of physics.”

(60)

We submit: Doesn’t quantum theory itself, which is a local
theory, account for its own predictions?

As the authors of this quote know very well, exper-
imental data contradict Bell’s theorem [23,24]13, which
implies that – as a statement about physical systems –
the theorem is wrong14. Since there is no error in the rea-
soning that establishes the theorem from its assumptions,
the flaw must be in the assumptions. Specifically, it is
the assumption that a mechanism exists that determines
which detector will click for the next photon registered
by an apparatus of the kind depicted in Figure 1. There
is no such deterministic mechanism – quantum processes

12 A more complicated example is discussed in Section 4.3
of [22].
13 Reference [23] reprinted in [11].
14 We leave it as a moot point whether the theorem is “one
of the most profound developments in the foundations of
physics”.
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are fundamentally probabilistic, events are randomly re-
alized – and the violation of Bell’s theorem by actual data
confirms that.

Insights of this kind predate Bell’s work by decades.
Recall, for example, the matter-of-fact statement in
Schrödinger’s essay of 1935 [25–27], which reads

“[If I wish to ascribe] to all determining parts
definite (merely not exactly known to me) nu-
merical values, then there is no supposition as
to these numerical values to be imagined that
would not conflict with some portion of quan-
tum theoretical assertions.”

(61)

in Trimmer’s translation [28]15.
In a derivation of Bell’s theorem, or any of the many

variants on record, the formalism of quantum theory is
not used. Instead, one relies on common-sense arguments
of a certain plausibility in an attempt at describing quan-
titatively the properties of the joint probabilities in exper-
iments similar to that of Figure 3. Part of that common
sense is a certain notion of locality: If the beam splitter in
Figure 1 is replaced by a mirror that the experimenter may
or may not put in place, the free-will decisions by Alice
should have no influence on the click frequencies that Bob
records in his experiment, and vice versa.

The actual joint probabilities – which are experimen-
tally determined by measuring many pairs emitted by the
SEPP and are correctly accounted for by quantum the-
ory – do not obey the restrictions that follow from that
common-sensible adhockery, and why should they? Find-
ings of an inadequate nonquantum formalism are irrele-
vant for quantum physics. If the findings are at variance
with the experimental data, as is the case here, we are
reminded of the inappropriateness of the reasoning. It fol-
lows that common sense of that sort does not apply in the
quantum realm.

Rather disturbingly, though, it has become acceptable
to turn the argument into its opposite. It is taken for
granted that quantum physics should obey such common
sense, but then that inadequate nonquantum formalism
needs nonlocal features – or so it seems16. The conclusion
that

“Quantum theory is nonlocal.” (62)

appears inevitable: So reads the opening line of a paper
that reports a violation of Bell’s theorem by experimental
data.

In fact, however, there is no nonlocality in an exper-
iment such as the one sketched in Figure 3 or any other
quantum-physics experiment on record. The SEPP uses
well-localized short-range interactions for the creation of
the photon pairs and the same is true for the processes
by which the photon absorption in one of the detectors
gives rise to the observed click. Quantum theory is a lo-
cal theory in exactly the same sense as all other physical

15 Reprinted in [11].
16 One could also conclude that there is no determinis-
tic mechanism, were this conclusion not prevented by that
common sense.

theories: All interactions come about by local couplings; a
continuity equation states that probability is locally con-
served; energy, momentum, angular momentum, and other
properties are transferred between particles by highly lo-
calized scattering events, and so forth. And just like the
other local theories do, quantum theory predicts nonlocal
correlations that originate in local processes.

It is true that joint probabilities that result from quan-
tum processes can have stronger correlations than those
available by nonquantum simulations; a violation of Bell’s
theorem or one of its variants tells us when such a situa-
tion is at hand. This can be exploited for various purposes,
including quantum key distribution [29], and experimental
realizations [30] have no nonlocal elements. Accordingly,
there are real-life practical applications of Bell’s theorem,
and they give Bell’s work lasting value.

We close this subject with noting that a very ba-
sic notion of Local Quantum Physics (the title of Haag’s
book [31]) is precisely the locality concept of Bell’s theo-
rem, namely that “the free-will decisions by Alice should
have no influence on the click frequencies that Bob records
in his experiment, and vice versa”. In the technical terms
of relativistic quantum field theory, this is the require-
ment that the local observables in Alice’s space-time re-
gion commute with the local observables in Bob’s region,
which is at a space-like separation from Alice’s. Since the
notion of locality that enters Bell’s theorem is exactly the
notion of locality in quantum field theory, the observed
violation of Bell’s theorem by quantum systems cannot
support the claim (62).

9 Heisenberg’s cut

9.1 The cut is where you put it

Alice and Bob have conducted the experiment of Figure 3
on a certain number of entangled photon pairs, indepen-
dently and identically prepared by the SEPP, and now
they report their measurement results to Charlie. What
they communicate to him is the sequence of detector clicks
observed and the times at which the clicks occurred. These
data enable Charlie to pair Alice’s clicks with Bob’s and so
verify that the click statistics observed is consistent with
the predictions obtained from applying Born’s rule to this
situation.

Alice and Bob will surely not trouble Charlie with ac-
counts of their minds, their retinas (or eardrums), or other
irrelevant information. Nor will Charlie bother with such
matters when computing probabilities. Yet, exactly this is
what certain dogmatists insist must be done in principle,
although in practice they themselves never do it17.
17 Statements like “In principle, I could solve the Schrödinger
equation to predict the next solar eclipse.” are empty unless
you can do it in practice. Something can be impossible in
principle, such as drawing a triangular circle or building a so-
called Popescu-Rohrlich box [32], or possible in practice. But
to declare that something is possible in principle can at best
mean that one is not aware of any reason that would make it
impossible in principle.
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The BS, the QWP, the PBSs of the apparatus in Fig-
ure 1 are made of atoms with which the incoming photon
interacts. The detectors D1, . . . , D4 are made of atoms,
too, and so is the experimenter’s retina and her brain. If
we apply quantum theory to the photon, we should also
apply it to the atoms of the optical elements, the detec-
tors, . . . , the experimenter’s brain. And why stop here?
There are also the atoms of your (the reader’s of these
lines) retina, optical nerve, and brain. A truly complete
account of the experiment should include all that – as a
matter of principle, that is, not of practice.

No, it shouldn’t. The experiment of Figure 3 inves-
tigates the polarization properties of entangled photon
pairs, and the phenomena of interest do not depend on
which material is used to realize the BS and the other
components of the four-outcome POM of Figure 1. Yes, if
one wishes to do so, one can extend the quantum descrip-
tion beyond the crucial degrees of freedom of the photons,
but nothing relevant will be added to Charlie’s analysis of
the data.

In practice, the formalism of quantum theory is always
applied to the relevant quantum variables (almost always
these are few) and the inclusion of irrelevant ones increases
the effort only but not the benefit18. The identification of
the relevant variables is usually unproblematic and, if in
doubt, one can take more quantum degrees of freedom into
account than might be necessary. There are always plenty
of technical details that are important for the success of
the experiment without entering the quantum-theoretical
description of the physical system that is studied. For ex-
ample, the experimenter has to calibrate the detectors and
determine their efficiencies, perhaps exploiting a mathe-
matical model of some crucial components, but in the end
the only significant number is the efficiency ηk for the kth
detector. When Charlie analyzes the data, he must be able
to trust the efficiencies reported to him, but what kind of
detector is actually used does not matter to him.

The imagined demarcation line between the degrees
of freedom that are given a full quantum-theoretical de-
scription and the “rest of the universe” (to use a pompous
expression) is known as Heisenberg’s cut, and the inclusion
of a few more variables into the quantum-theoretical de-
scription than really necessary is the shift of Heisenberg’s
cut.

In a manner of speaking, one can regard Heisenberg’s
cut as separating the microscopic realm of quantum
physics from the macroscopic world of classical physics,
but one should not be carried away by the connotations
that the micro/macro distinction may bring about. We
are always referring to a particular context, such as Al-
ice and Bob taking data and Charlie analyzing them,
not to a generally valid demarcation line. When apply-
ing the quantum-theoretical formalism to an experiment
in Munich, the polarization degrees of freedom of pho-
ton pairs emitted by a SEPP in Singapore are on the
macroscopic side of Heisenberg’s cut, whereas they are

18 This is also true for any application of Newton’s classical
mechanics, Maxwell’s electromagnetism, or any other physical
theory, without the dogmatists crying foul.

on the microscopic side when the Singapore experiment is
evaluated.

In his posthumous eloquent polemic Against ‘measure-
ment’ [33]19 and also on earlier occasions, Bell20 talks
about Heisenberg’s cut as if it were a universal border be-
tween quantum physics and classical physics. Having made
this mistake21, he then concludes that quantum theory is
ill-defined because it does not specify the location of the
cut with the mathematical precision that he demands it
should have.

Bell is missing three essential points. First, there is
a Heisenberg’s cut whenever the quantum-theoretical for-
malism is applied in a particular situation: There is no
such universal border. Second, the cut is imprecise by its
nature, it can be shifted to include as many quantum de-
grees of freedom as one can handle in a calculation or
control in an experiment: Heisenberg’s cut is where you
put it. Third, the distinction between microscopic phe-
nomena and macroscopic phenomena is meaningful even
if one cannot give rigorous criteria for the micro/macro
distinction.

We illustrate this remark by the following analogy. The
concepts of land and sea are meaningful although you can-
not draw, in a unique and natural way, a mathematical line
on the beach that has the sea on one side and the land on
the other. You can draw lines such that all of the sea is
assuredly on one side, or all of the land is on the other,
but there is no line that accomplishes both.

A fourth point is this: Alice and Bob rely on the macro-
scopic world around them, with its well-defined properties,
when they record their data and communicate them to
Charlie. One cannot even speak about quantum phenom-
ena without reference to the rather robust classical-physics
environment, in which all human activity happens. Deny-
ing that there is this robust environment, is denying the
obvious.

In summary, then, Heisenberg’s cut is needed and, by
its nature, it is imprecise, and this is just fine.

9.2 Decoherence

Whenever we apply the formalism of quantum theory to
a particular physical situation, we identify the relevant
degrees of freedom and ignore all the rest. In other words,
we put Heisenberg’s cut where we find it appropriate. This
involves a physical approximation because we disregard
all dynamical effects that arise from interactions between
the quantum degrees of freedom that are treated in full
and those on the other side of the cut, often referred to
as the environment. As a consequence, the predictions we
make about future measurements on the system are not

19 The replies by van Kampen [34,35], Peierls [36], and
Gottfried [37] must not be missed.
20 This one exception from the no-finger-pointing policy of
footnote 1 is unavoidable.
21 Bell also makes that category mistake of regarding the wave
function as a physical object, and he misunderstands state
reduction as a physical process.
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absolutely reliable and, since small errors accumulate, the
predictions are less reliable for the far future than the near
future.

In terms of the parametric time dependence of the sta-
tistical operator, this means that the von Neumann equa-
tion (23) applies only during the initial period when the
residual interactions with the environment can be ignored.
If we wish to extrapolate from the initial time t0 to much
later times, the uncertainty that originates in our lack
of knowledge about the system-environment interactions
across Heisenberg’s cut has to be taken into account. This
leads to a degradation of our statistical operator at later
times t, usually noticeable as an increase of the entropy.
There is a rich literature about this so-called decoher-
ence, and many ways of modeling the environment and
the system-environment interactions have been proposed
and studied (a simple example of “phase decoherence” ap-
pears in Sect. 11.1). When a suitable model is adopted, the
resulting modification of the von Neumann equation (23)
can give quite an accurate account of the loss in preci-
sion of our predictions about the future properties of the
quantum system.

10 No murky interpretation

The introduction of a recent paper contains the following
sentences:

“[. . . ] a century after the discovery of quan-
tum mechanics, it seems that we are no closer
to a consensus about its interpretation than
we were in the beginning. The collapse of the
quantum state occurring during the process
of measurement [. . . ] does not have an unam-
biguous definition and a reasonable explana-
tion. [. . . ] some radical changes in our classi-
cal understanding of reality have to be made;
e.g. constructing a physical process of collapse,
accepting the existence of parallel worlds, or
adding nonlocal hidden variables.”

(63)

Of course, the authors of these lines use Born’s rule for
the calculation of probabilities, associate the wavelengths
of spectral lines with differences of energy eigenvalues, and
use all other standard links between the mathematical for-
malism and the physical phenomena. In other words, these
authors’ interpretation of quantum theory is the usual
one22. Why, then, is there this blunt assertion that “there
is no consensus about the interpretation”?

Clearly, the authors of (63) have a nonstandard mean-
ing of the word “interpretation” in mind, and so have oth-
ers23. The actual interpretation, that is: The battle-tested
22 It is simply the interpretation of quantum theory. Calling it
the standard interpretation or using any other identifier is un-
necessary and, indeed, harmful because “this sounds as if there
were several interpretations of quantum mechanics. There is
only one”. (Peierls as quoted by Davies and Brown [38].)
23 The Compendium of Quantum Physics [1] has entries on
more than ten “interpretations”, and two recent polls [39,40]

link between the formalism and the phenomena, is not
what they are questioning. They would refer to that as the
“minimal interpretation” and that is not enough for them.
They want to know “what is really going on”, thereby re-
quiring answers to questions that quantum theory cannot
provide.

These are questions about the mind-body problem, the
relation between our conscious human experiences and our
free will on one side, and the reality of natural phenom-
ena on the other – philosophical issues that are outside of
physics. Yes, it is important to understand the philosoph-
ical implications of the lessons of quantum physics, but
one must not confuse physics with philosophy.

The “lack of consensus” noted in (63) is not about
the interpretation of quantum theory in the strict sense of
Section 1, but about its bearing on philosophy. The use
of the term “interpretation” for the more or less success-
ful reconciliation of philosophical preconceptions with the
quantum-physical phenomena is most unfortunate, and
there is little hope that this practice will change. Fuchs’s
and Peres’s verdict Quantum Theory Needs No ‘Interpre-
tation’ (the title of their essay [42]) should be understood
in this context: Quantum theory has its interpretation and
does not need a philosophical Überbau.

Of course, philosophers should be encouraged to study
the lessons of quantum theory – for example, the lesson
that the future is not predetermined by the past24 – but
their philosophical debates are really irrelevant for quan-
tum theory as a physical theory, although they are likely
to be of great interest to physicists. We could leave it
at that, were there not the widespread habit of the de-
baters to endow the mathematical symbols of the formal-
ism with more meaning than they have. In particular,
there is a shared desire to regard the Schrödinger wave
function as a physical object itself after forgetting, or re-
fusing to accept, that it is merely a mathematical tool that
we use for a description of the physical object (electron,
atom, photon, . . . ). The regrettable textbook practice
of invoking analogies between Schrödinger’s probability-
amplitude waves and sound waves, water-surface waves,
or electromagnetic waves provokes and feeds that desire.
The fundamental difference is then ignored: Sound waves,
water waves, electromagnetic waves are physical objects
with mechanical properties, they carry energy, momen-
tum, angular momentum from here to there, whereas the
Schrödinger waves are mathematical symbols25.

The reification of the wave function requires that the
“collapse of the quantum state” is a physical process,
but since it isn’t, there cannot be “an unambiguous def-
inition”, and a “reasonable explanation” is not possi-
ble. We submit: With such incorrect meaning given to

gave about that many “interpretations” to choose from, while
Tegmark’s poll of 1998 [41] had only half as many choices.
24 However the next photon is prepared, there is no way of
knowing which of the four detectors in the experiment of Fig-
ure 1 will click.
25 Also, only very special cases of wave functions are
probability-amplitude waves in the three-dimensional space of
physical positions.
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the wave function and to the process of state reduc-
tion, one no longer deals with quantum theory, but with
something else. The conclusions that are then reached
about philosophical implications are of no consequence.

Indeed, the alleged implications (“parallel worlds”) are
bewildering and prompt us to paraphrase van Kampen’s
Theorem IV [43]: If you endow the mathematical symbols
with more meaning than they have, you yourself are re-
sponsible for the consequences, and you must not blame
quantum theory when you get into dire straits.

The interpretation of quantum theory is not murky, it
is absolutely clear; there is no lack of consensus about it. It
is one of the three defining constituents of quantum theory
(Sect. 1), and all practicing quantum physicists rely on it
all the time.

11 You cannot see what you
wouldn’t recognize

11.1 No measurement problem

We can use the set-up of Figure 1, see Sections 3.1 and 3.2,
for a discussion of the so-called “measurement problem”.
A typical argument would develop along the following
lines. At the initial time tini, we have the photon approach-
ing the BS with a polarization-state ket

|℘〉 = |V〉α+ |H〉β with α
2 + β

2 = 1, (64)

and the four detectors are in the “ready” state

|R〉 = |R1R2R3R4〉, (65)

so that we write

| 〉 = |℘R, tini〉 (66)

for the state ket as characterized by properties referring
to the initial time. Expressed with reference to the final
time tfin, this state ket is

| 〉 = |vac NC, tfin〉√p0 +
4∑

k=1

|vac Ck, tfin〉√pk, (67)

where Ck stands for “the kth detector has clicked and the
other three have not” and NC denotes the no-click situa-
tion. At the final time, the photon has been absorbed and
we have the photon vacuum state for all detector states,
which allows us to focus on the final state of the detectors,

| 〉 = |vac D, tfin〉 (68)

with

|D〉 = |NC〉√p0 +
4∑

k=1

|Ck〉√pk. (69)

This is the point where some start to worry: The detec-
tors are in a superposition of this one having clicked or
that one having clicked, then how does one account for a

definite click of one of the detectors and why do we never
see superpositions such as

(|C1〉+ |C2〉
)
/
√

2 with the two
detectors having half-clicked?

Although these questions seem to be addressing pro-
found issues, they are not formulating a serious “mea-
surement problem”. At best, they are rephrasing matters
already discussed.

First, we note that the state ket | 〉 in (68) is the same
as the one in (66). The two versions of | 〉 are particular
examples of the general statement in (34). Both versions
of | 〉 encode what we know about the physical situation.
Why, then, are all those questions asked about (68), but
none about (66)?

Second, the superposition
(|C1〉 + |C2〉

)
/
√

2 does not
describe a situation where detectors D1 and D2 each have
“half-clicked” (whatever that would mean) but an en-
tirely new situation that is outside our experience. Re-
member that

(|V〉 + |H〉i)/√2 is not a polarization state
that is “half-vertical” and “half-horizontal” but one that
is entirely right-circular, phenomenologically very differ-
ent from both |V〉 and |H〉. We know what

(|V〉+|H〉eiϕ)
/
√

2
means (as a statement about a photon’s polarization) for
any value of the phase ϕ, but we have no clue about(|C1〉+ |C2〉eiϕ

)
/
√

2. So, we never see these superpositions
because we cannot recognize them26. If we could, either
version of | 〉 would enable us to calculate the probability
of seeing these superpositions.

Third, despite strong assertions that it does, decoher-
ence does not come to the rescue. The asserters consider
the statistical operator associated with ket |D〉,

ρD = |D〉〈D| (70)

= |NC〉p0〈NC|+
4∑

k=1

|Ck〉pk〈Ck|+
{
cross terms

}
,

where the cross terms collect all ket-bra products of two
different outcomes,

{
cross terms

}
=

4∑
k=1

(|NC〉√p0pk〈Ck|+ |Ck〉√p0pk〈NC|)
+

∑
j �=k

|Cj〉√pjpk〈Ck|. (71)

At this point, one remembers that |Ck〉 symbolizes a state
of very many quantum degrees of freedom (all those nuclei
and electrons that make up the optical elements and the
detectors) and, therefore, one is suddenly unsure about
details such as the over-all phase assigned to |Ck〉, and so
it appears natural to refine the quantum-theoretical de-
scription by the replacements |Ck〉 → |Ck〉eiφk with ran-
dom phases φk. Here, “random” simply means that the

26 He who interjects “But, in principle, I could certainly
measure the observables described by the hermitian operators

|C1〉eiϕ〈C2| + |C2〉e−iϕ〈C1|, and when the eigenvalue +1 is
found, I will have succeeded.” should reread footnote 17 and
then ask himself Can I do it in practice?
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phases acquire different unknown values whenever the ex-
periment is repeated. Averaging over the random phases
removes the cross terms,{

cross terms
}→ 0, (72)

and we arrive at an effective statistical operator for the
detectors,

ρD → ρD, eff = |NC〉p0〈NC|+
4∑

k=1

|Ck〉pk〈Ck|. (73)

The adjective “effective” means that all observable prop-
erties calculated with ρD,eff are the same as those calcu-
lated with ρD. In other words, the cross terms of (70) are
ineffective, they are of no consequence. This, of course,
is not a recent insight. There are, for example, the ac-
counts by Süssmann [14] and Peres [44]27 of 1958 and 1980,
respectively.

So, ρD “has decohered” into ρD,eff – the transition (73)
is now regarded as a physical process! – and we have a
mixed state that is as if we had a Gibbs ensemble com-
posed of a fraction p0 of no-click cases, a fraction p1 of
clicks by detector D1, . . . , a fraction p4 of clicks by de-
tector D4. One of the situations is the case, and we do
not know which one until we take note of the outcome of
the experiment. All is fine, or so it seems, because we just
have this “classical ignorance” rather than the quantum-
theoretical indefiniteness of ρD, and we no longer need to
worry why we do not see the detectors with properties
described by superpositions such as

(|C1〉+ |C2〉
)
/
√

2.
All is fine? No, we are fooling ourselves. Remembering

Section 4.1, we note that the effective statistical operator
does not have this one unique as-if reality associated with
it, but very many of them. For example, we have

ρD,eff = |NC〉p0〈NC|+ |C1〉p1〈C1|+ |C2〉p2〈C2|
+ |C34+〉p3 + p4

2
〈C34+|

+ |C34−〉p3 + p4

2
〈C34−| (74)

with

|C34±〉 = |C3〉
√

p3

p3 + p4
± |C4〉

√
p4

p3 + p4
(75)

and, clearly, the mixture described by ρD,eff can also be
blended by p0 parts of no-click cases, p1 parts of clicks
by D1, p2 parts of clicks by D2, plus 1

2 (p3 + p4) parts
each for the situations (of unknown phenomenology) that
are described by the superpositions |C34+〉 and |C34−〉. As
always, there is an infinity of blends for the one mixture
and a corresponding infinity of as-if realities.

Another reason why we are fooling ourselves is that we
still need the principle of random realization for selecting
one of the five possibilities and Born’s rule for calculating
the probabilities from ρD,eff . It is not the case, as self-
suggesting this may appear, that we can just read off the
27 Reprinted in [11].

probabilities by looking at the weights of our preferred as-
if reality. Such a reading-off can sometimes give the right
answer, but we know that it does only after an application
of Born’s rule has confirmed our educated guess.

Fourth, the transition (73) is an improvement of our
description, it is not a physical process. The decoherence
argument with the unknown phase factors eiφk and so
forth is a confession that we don’t know the dynamics with
sufficient precision, and our starting point (66) is wrong,
too. We do not have enough information for describing
the initial “ready” state of the detectors by a state ket |R〉
or its corresponding rank-one statistical operator |R〉〈R|.
We can, at most, have limited knowledge about a few de-
grees of freedom of the detectors and account for that by
a highly mixed state. The state kets of (66), (68), and (69)
border on utter nonsense.

When preparing the experiment and getting the de-
tectors into the “ready” state, we are not controlling all
quantum degrees of freedom of the detectors perfectly but,
at best, the few relevant ones with some limited precision.
There are, therefore, very many pure quantum states that
we could imagine for the “ready” detectors rather than a
unique state associated with the ket |R〉. Strictly speak-
ing, there is not even the pure-polarization ket |℘〉, but
that is acceptable as a pretty good approximation in a
well-controlled experiment.

Rather than the convex sum of projectors in (73) and
(74), we have, at best, a convex sum of highly mixed sta-
tistical operators for the detectors,

ρD = p0ρ
(NC)
D +

4∑
k=1

pkρ
(k)
D , (76)

where ρ(k)
D is for a click of the kth detector and ρ(NC)

D for
the no-click case. But this ρD, too, is more an illusion
than a reality. Even the smallest detectors contain a gar-
gantuan number of atoms, and we don’t really know what
exactly the detectors are composed of – removing a single
molecule, say, from the surface of one of the wires in the
apparatus has no bearing on the relevant aspects of the
physical situation. Therefore, we will be hard-pressed to
write down meaningful expressions for the ρ(k)

D s.28
This is not a problem, though, because there is no

use of the quantum description of the detectors that have
clicked or not. There are no probabilities of subsequent
events to be calculated from ρD. The photon-absorption
event has been amplified or not, one of the detectors has
clicked or the photon has escaped detection: The measure-
ment of this photon’s polarization is over.

Fifth, since neither decoherence nor any other mecha-
nism select one particular outcome (see Sect. 8), the whole
“measurement problem” reduces to the question Why is
there one specific outcome? which is asking Why are there
randomly realized events? in the particular context con-
sidered. This harkens back to Section 1, where we noted
that quantum theory cannot give an answer.

28 He who is still pondering the question in footnote 26, may
find a useful hint here.
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In summary, then, the alleged “measurement problem”
does not exist as a problem of quantum theory. Those who
want to pursue the question Why are there events? must
seek the answer elsewhere.

11.2 Schrödinger’s cat

In this context one can hardly avoid the mentioning
of Schrödinger’s infamous cat29. When commenting on
the physical significance of the quantum-theoretical wave
function – it is an expectation catalog (Katalog der
Erwartung) in Schrödinger’s own words – he gave, as a
warning, the “ridiculous” (burlesk) example of a cat whose
vital state serves as the indicator whether a radioactive
decay has occurred or not. That passage reads

“One can even set up quite ridiculous cases. A
cat is penned up in a steel chamber, along with
the following diabolical device (which must be
secured against direct interference by the cat):
in a Geiger counter there is a tiny bit of ra-
dioactive substance, so small, that perhaps in
the course of one hour one of the atoms decays,
but also, with equal probability, perhaps none;
if it happens, the counter tube discharges and
through a relay releases a hammer which shat-
ters a small flask of hydrocyanic acid. If one
has left this entire system to itself for an hour,
one would say that the cat still lives if mean-
while no atom has decayed. The first atomic
decay would have poisoned it. The ψ-function
of the entire system would express this by hav-
ing in it the living and the dead cat (pardon
the expression) mixed or smeared out in equal
parts.”

(77)

in Trimmer’s translation [25–28]. In other words, the dia-
bolic device establishes the strong correlations

no decay←→ live cat,
yes decay←→ dead cat, (78)

so that the cat is a bona fide detector for the radioac-
tive decay event. It has the obvious advantage that the
detector is easy to read.

Schrödinger is, of course, overshooting the mark. Just
like there is no ket |D〉 for the detectors in Section 11.1,
there is no ψ-function that has “the living and dead cat
smeared out”. The imagined superpositions of the dead
and the live cat, which have inspired so many authors, are
fantastic phantoms of the same kind as the detector states
associated with the kets

(|C1〉 + |C2〉eiϕ
)
/
√

2. We do not
know how to recognize them and, therefore, we cannot see
them. In all of that, the cat is really superfluous, it just
adds drama to the plot; the position of the hammer, say,
already tells the story.

It would be fitting if any such correlated state of a
quantum degree of freedom and a macroscopic detector
29 Heisenberg’s dog [45] does not concern us here.

would be called a Schrödinger-cat state in today’s jargon.
But that is not the case. The term is routinely applied
to superpositions of states of a few quantum degrees of
freedom, or even of a single one, that have vastly different
quantum numbers. In this sense, the silver atom emerging
from a Stern-Gerlach apparatus is in a Schrödinger-cat
state. This usage of the term does not do justice to what
Schrödinger had in mind; it should be discouraged, the
more so because such superpositions are nothing special,
they are common in standard interferometric devices.

12 Summary

The foundations of quantum theory have been laid, and
laid well, by the founding fathers – Planck, Einstein, Bohr,
Heisenberg, Schrödinger, Born, Dirac, and others. Much
has happened since those early days of the 1920s. The
phenomenology and the formalism are much richer today
and, to supplement this enrichment, the interpretation has
more links between the formalism and the phenomena.
This is a natural consequence of our communal duty to
explore the consequences, implications, and applications
of quantum theory, and we are still in the process of doing
just that.

It is true that, occasionally, the founding fathers and
their peers found it difficult to reconcile the lessons of
quantum theory with the world view they had acquired
earlier. The younger players, notably Heisenberg and
Dirac, overcame these difficulties more quickly and more
easily than their seniors, Planck and Einstein among them.
Einstein, for example, did not like the random nature of
events. He told Franck the following30:

“I can, if the worse comes to worst, still realize
that God may have created a world in which
there are no natural laws. In short, chaos. But
that there should be statistical laws with def-
inite solutions, i.e., laws that compel God to
throw dice in each individual case, I find highly
disagreeable.”

(79)

While Einstein’s metaphor of the dice-throwing God is
charming and memorable, and his personal difficulties are
of great historical interest, it is ultimately irrelevant what
he, or any other individual, finds disagreeable. The facts
count – and Einstein, of course, understood this. In sci-
ence, truth is the daughter of time, not of authority.

One must also acknowledge that, after the lapse of
fourscore years, the terminology is more precise today
than it was during the founding years. Concepts get clearer
in time, and one learns to avoid sloppy terms and mis-
leading phrases. The foundations, however, have not been
touched by these refinements.

As way of summary, here are our answers to the ques-
tions asked at the beginning:

– Yes, quantum theory well defined.
– Yes, quantum theory has a clear

interpretation.
30 As quoted by Snow in [46].



Page 16 of 16

– Yes, quantum theory is a local theory.
– No, quantum evolution is not reversible.
– No, wave functions do not collapse; you

reduce your state.
– No, there is no instant action at a distance.
– Heisenberg’s cut is where you put it.
– No, Schrödinger’s cat is not half dead and

half alive.
– No, there is no “measurement problem”.

Tersely: Quantum theory is a well-defined local theory
with a clear interpretation. No “measurement problem” or
any other foundational matters are waiting to be settled.

What, then, about the steady stream of publications
that offer solutions for alleged fundamental problems, each
of them wrongly identified on the basis of one misunder-
standing of quantum theory or another? Well, one could
be annoyed by that and join van Kampen [47] in calling
it a scandal when a respectable journal prints yet another
such article. No-one, however, is advocating censorship,
even of the mildest kind, because the scientific debate can-
not tolerate it. Yet, is it not saddening that so much of
diligent effort is wasted on studying pseudo-problems?

The Centre for Quantum Technologies is a Research Centre
of Excellence funded by the Ministry of Education and the
National Research Foundation of Singapore.
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