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Abstract. In 1904, the year before Einstein’s seminal papers on special
relativity, Austrian physicist Fritz Hasenöhrl examined the properties
of blackbody radiation in a moving cavity. He calculated the work nec-
essary to keep the cavity moving at a constant velocity as it fills with
radiation and concluded that the radiation energy has associated with
it an apparent mass such that E = 3

8
mc2. In a subsequent paper, also

in 1904, Hasenöhrl achieved the same result by computing the force
necessary to accelerate a cavity already filled with radiation. In early
1905, he corrected the latter result to E = 3

4
mc2. This result, i.e.,

m = 4
3
E/c2, has led many to conclude that Hasenöhrl fell victim to

the same “mistake” made by others who derived this relation between
the mass and electrostatic energy of the electron. Some have attributed
the mistake to the neglect of stress in the blackbody cavity. In this pa-
per, Hasenöhrl’s papers are examined from a modern, relativistic point
of view in an attempt to understand where he went wrong. The primary
mistake in his first paper was, ironically, that he didn’t account for the
loss of mass of the blackbody end caps as they radiate energy into
the cavity. However, even taking this into account one concludes that
blackbody radiation has a mass equivalent of m = 4

3
E/c2 or m = 5

3
E/c2

depending on whether one equates the momentum or kinetic energy of
radiation to the momentum or kinetic energy of an equivalent mass.
In his second and third papers that deal with an accelerated cavity,
Hasenöhrl concluded that the mass associated with blackbody radia-
tion is m = 4

3
E/c2, a result which, within the restricted context of

Hasenöhrl’s gedanken experiment, is actually consistent with special
relativity. (If one includes all components of the system, including cav-
ity stresses, then the total mass and energy of the system are, to be
sure, related by m = E/c2.) Both of these problems are non-trivial and
the surprising results, indeed, turn out to be relevant to the “ 4

3
prob-

lem” in classical models of the electron. An important lesson of these
analyses is that E = mc2, while extremely useful, is not a “law of
physics” in the sense that it ought not be applied indiscriminately to
any extended system and, in particular, to the subsystems from which
they are comprised. We suspect that similar problems have plagued
attempts to model the classical electron.
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1 Historical introduction

In 1904-5 Fritz Hasenöhrl published the three papers, all with the title “On the the-
ory of radiation in moving bodies,” for which he is best known ([Hasenöhrl 1904a;
Hasenöhrl 1904b; Hasenöhrl 1905] referred to as H1, H2 and H3). They concerned the
mass equivalent of blackbody radiation in a moving cavity. The latter two papers ap-
peared in the Annalen der Physik and for his work Hasenöhrl won the Haitinger Prize
of the Austrian Academy of Sciences. (In 1907 he succeeded Boltzmann as professor
of theoretical physics at the University of Vienna.) These three papers analyzed two
different gedankenexperiments each of which demonstrated a connection between the
energy of radiation and inertial mass. In the first thought experiment, he arrived at
E = 3

8mc2 and in the second, E = 3
4mc2. Hasenöhrl was working within the confines

of an ether theory and, not surprisingly, these results were soon replaced by Einstein’s
quintessential E = mc2. Even so, it is interesting to ask “Where did Hasenöhrl go
wrong?”

The notion that mass and energy are related originated well before Hasenöhrl’s
and Einstein’s papers. As early as 1881, J.J. Thomson [Thomson 1881] argued that
the backreaction of the field of a charged sphere (the classical model of the electron)
would impede its motion and result in an apparent mass increase of (4/15)μe2/a,
where e was the charge on the sphere, a its radius and μ the magnetic permeability.
Fitzgerald, Heaviside, Wein, and Abraham subsequently corrected Thompson’s anal-
ysis and all concluded that the interaction of a moving electron with its field results
in an apparent mass given by m = 4

3E/c2 where E is the electrostatic energy of the
stationary electron. (For more on these early works, see Max Jammer’s Concepts of
Mass [Jammer 1951].)

All these investigations were of the relationship between the mass and the electro-
static energy of the electron. Hasenöhrl broadened the query by asking “what is the
mass equivalent of blackbody radiation?” Previous explanations as to why Hasenöhrl
failed to achieve the “correct” result, i.e., m = E/c2, are not particularly illuminat-
ing. For example, in his Concepts of Mass in Contemporary Physics and Philosophy
[Jammer 2000], Jammer, says only: “What was probably the most publicized prerel-
ativistic declaration of such a relationship [between inertia and energy] was made in
1904 by Fritz Hasenöhrl. Using Abraham’s theory, Hasenöhrl showed that a cavity
with perfectly reflecting walls behaves, if set in motion, as if it has a mass m given
by m = 8V ε0/3c2, where V is the volume of the cavity, ε0 is the energy density at
rest, and c is the velocity of light.” (For a more extensive discussion, see Boughn &
Rothman 2011.) The overall impression is that few authors have made an effort to
understand exactly what Hasenöhrl did.

In certain ways Hasenöhrl’s thought experiments were both more bold and more
well defined than Einstein’s, which alone renders them worthy of study. A macroscopic,
extended cavity filled with blackbody radiation is certainly a more complicated system
than Einstein’s point particle emitting back-to-back photons. In addition, whereas the
characteristics of blackbody radiation and the laws governing the radiation (Maxwell’s
equations) were well known at the time, the emission process of radiation from point
particles (atoms) was not well understood. Einstein simply conjectured that the details
of the emission process were not relevant to his result.

Another reason to investigate Hasenöhrl’s thought experiments is the apparent
relation to the famous “ 4

3 problem” of the self-energy of the electron (see Section 4).
Enrico Fermi, in fact, assumed that the two 4

3 ’s were identical and devoted one of
his earliest papers to resolving the issue [Fermi & Pontremoli 1923b]. We initially
attempted to understand Hasenöhrl’s apparently incorrect results by reproducing his
analyses. This effort was frustrated by his cumbersome, pre-relativistic calculations
that were not free from error. The objective of the present paper is to introduce
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Fig. 1. A cavity consisting of two blackbody radiators, A and B in a completely reflecting
enclosure of length D. At a time t = 0 the radiating caps suddenly begin to emit radiation
in the direction of motion (+) and opposite the direction of motion (–). From the frame of
a moving observer, the (+/–) radiation will be blue/red shifted and hence exert different
reaction forces on A and B. (Based on H1, H2.)

Hasenöhrl’s two thought experiments and then achieve correct relativistic results (Sec-
tions 2 and 3), which will allow us to understand both the limtations and strengths
of his proofs. In the process we determine that the neglect of cavity stresses is not the
primary issue and that Fermi’s proof is apparently violated by Hasenöhrl’s gedanken
experiment (Section 4).

2 Hasenöhrl’s first thought experiment

Considering the importance of blackbody radiation at the turn of the 20th century,
an investigation of the properties of blackbody radiation in a moving cavity was an
eminently reasonable undertaking. Hasenöhrl considered the case of two blackbody
radiators (endcaps) at temperature T enclosed in a cylindrical cavity made of reflect-
ing walls (see Figure 1). Initially the cavity is assumed to be void of any radiation and
at a time t = 0 the two radiators A and B are, in some unspecified way, enabled to
begin filling the cavity with radiation. He assumes that the blackbody radiators have
sufficiently large heat capacity that they do not cool appreciably during this process.
The two endcaps are presummably held in place by stresses in the cavity walls; al-
though, Hasenöhrl refers to these forces as external (außen) and treats them as such.
Whether he actually viewed the radiators as being held in place by forces external
to the cavity or by internal stresses makes no difference to his subsequent analysis.
We choose to make this explicit by supposing that the two encaps are actually held
in place by external forces and are otherwise free to slide back and forth inside the
cavity.

In the rest frame of the cavity, the radiation reaction forces on the two endcaps
are equal and opposite as are the external forces required to hold the endcaps in
place. As viewed by a moving observer, however, the situation is quite different. In
this observer’s frame, the radiation from the trailing endcap (A) is Doppler shifted to
the blue while radiation from the leading endcap (B) is redshifted. Therefore, when
the radiators are switched on, the moving observer finds that two different external
forces F+ and F− are required to counter the radiation reaction forces on the endcaps
and keep them moving at a constant velocity. Because the endcaps are in motion and
because F+ �= F−, the interesting consequence is that net work is performed on the
cavity.

Hasenöhrl does not use the terminology “rest frame of the cavity” or “lab frame.”
Although he mentions the ether only three times throughout his papers, it is clear
that for him all motion is taking place relative to the absolute frame of the ether. In
this paper the lab and cavity frames have their usual meanings. Quantities referring
to the lab frame are designated by a prime; cavity-frame quantities are unprimed.
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The crux of Hasenöhrl’s analysis is a calculation of the work done by the external
forces from the time that the blackbody radiators are turned on to the time that the
cavity is at equilibrium and filled with blackbody radiation. To order v2/c2, it turns
out that Hasenöhrl’s result, W ′ = 4

3E(v2/c2), is precisely the same as given by special
relativity (to the same order in v/c). For this reason and because Hasenöhrl’s pre-
relativistic calculation is very difficult to follow, we use a proper relativistic analysis
to compute the value of the radiation reaction forces and the work performed by the
external forces required to balance them. That the two results agree is not surprising
because the reaction forces are only needed to first order in v/c and can be derived
from the non-relativistic Doppler shift and abberation relations.

2.1 Relativistic calculation of the work

The strategy is to calculate the radiation pressure on a moving surface by transforming
the blackbody radiation intensity i in the cavity rest frame to a frame moving at
velocity v relative to the cavity. A detailed derivation of this tranformation can be
found in Boughn & Rothman [2011]; however, the same result can be got more directly
from an expression for the anisotropic temperature of the cosmic background radiation
[Peebles & Wilkinson 1968]. Peebles and Wilkinson found that in a moving frame the
radiation maintains a blackbody spectrum

i′ν =
2hν′3

c2
(ehν′/kT ′−1)−1 (2.1)

but with a temperature T ′ that depends on direction,

T (θ′) = T (
(1 − β2)

1
2

(1 − β cos θ′)
(2.2)

where T is the blackbody temperature in the rest (cavity) frame, β ≡ v/c, and θ′
the angle between the radiation and v. The integral of i′ν over all frequencies is well
known to be ∝ T ′4. Therefore the intensity in the lab frame is

i′ = i
(1 − β2)2

(1 − β cos θ′)4
(2.3)

where i is the intensity in the cavity frame and is given by the usual Planck formula.
Although this derivation of Eq. (2.3) assumes blackbody radiation, it is straightfor-
ward to show that it holds for any isotropic radiation field [Boughn & Rothman 2011].
It will become apparent that in order to calculate the work W ′ to second order in β,
one can ignore terms of order β2 in Eq. (2.3), i.e., the relativistic corrections. That
one need only use the non-relativistic transformation laws to compute the work at
this order provides an explanation as to why Hasenöhrl obtained an essentially correct
result for the work. Finally, it is well known that the intensity and energy density of
blackbody radiation (or any isotropic radiation field for that matter) is

ρ =
4πi

c
, (2.4)

which Hasenöhrl accepts (H1).
Now consider the radiation being emitted at an angle θ′ from the left end cap

of the cavity in Figure 1. Using the relation between momentum and energy for
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electromagnetic radiation P = E/c, the rate at which momentum leaves that end cap
is given by

dP ′

dt′
=

i′

c2
dΩ′A (c cos θ′ − v), (2.5)

where A is the area of end cap. By symmetry, the only non-vanishing component of
the momentum is in the direction of v. The last factor in Eq. (2.5) is due to the lab
frame relative velocity between the radiation and the encap in this direction. From
Newton’s third law, dP ′/dt′ is the magnitude of the rightward external force needed
to counter the radiation reaction force and keep the left endcap moving at constant
velocity. The work done by that portion of the external force needed to counter the
reaction force of the radiation emitted at angle θ′ is

dW ′
+(θ′) =

dP ′

dt′
vΔt′(θ′), (2.6)

where Δt′(θ′) is the light-crossing time for radiation at an angle θ′. After this time,
radiation will be absorbed by end cap B and the force necessary to counter the
resulting radiation pressure on B is equal and opposite to the force on end cap A. It
is straightforward to show that, independent of the number of reflections along the
cavity side wall,

Δt′(θ′) =
D′

c cos θ′ − v)
(2.7)

where D′ = D/γ is the Lorentz contracted length of the cavity in the lab frame. For
cylindrical symmetry dΩ′ = 2π sin θ′dθ′ = −2πd(cos θ′) and hence

dW ′
+(θ′) = −2πi

AD′v(1 − β2) cos θ′d(cos θ′)
c2(1 − β cos θ′)4

. (2.8)

Retaining terms to first order in β, the total work on radiator A is

W ′
+ =

2πiADv

c2

∫ 1

0

(1 + 4β cos θ′) cos θ′d(cosθ′)

=
2πiADv

c2

(
1
2

+
4β

3

)
. (2.9)

Note that, because of abberation, the upper limit on the above integral is not precisely
unity; however, this correction is also higher order in β and can be neglected. The
work on the right end cap can be found by taking the negative of the above expression
after reversing the sign on β. The net work done by the external force is consequently

W ′ = W ′
+ + W ′

− =
4
3

[
4πiAD

c

]
v2

c2
(2.10)

where AD = V is the rest frame volume of the cavity. From Eq. (2.4), the quantity in
brackets is ρV = E, the energy of the blackbody radiation in the cavity rest frame.
Therefore,

W ′ =
4
3
E

v2

c2
, (2.11)

which is exactly Hasenöhrl’s result.
One might worry that that we have ignored questions of simultaneity that, afterall,

are first order in v/c. If the two endcaps begin radiating at the same time in the cavity
rest frame, then in the moving lab frame, to first order in v/c, the trailing endcap will
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begin radiating δt′ = vD/c2 earlier. However, the time interval Δt′ (see Eq. (2.7)) used
to compute the work is the lab frame time interval required for radiation emitted from
endcap A to reach endcap B, a quantity that is independent of when the radiation
is emitted from A. The same is true for the radiation emitted from endcap B and
absorbed by endcap A. The only difficulty that might arise is if encap B were required
to absorb radiation before it begins to emit radiation (and the same situation for
endcap A). However, the shortest length of time rquired for this to happen is D/c,
the light travel time across the cavity, and this is much greater than δt′ from above.

Even so, Hasenöhrl’s calculation is not without error. As pointed out in the ab-
stract, his primary mistake was the ironic omission of the mass loss of the end caps
as they radiate energy into the cavity. Newton’s second law implies that an external
force must be applied to an object that is loosing mass if that mass is to maintain a
constant velocity. To first order in v/c, it is sufficient to consider the non-relativistic
expression of the second law, i.e.,

F ′ = dP ′/dt′ = d(mv)/dt′ = vdm/dt′ + mdv/dt′ = vdm/dt′, (2.12)

where F ′ = F ′
ext + F ′

rad, F ′
ext is the external force, and F ′

rad is the reaction force of
the radiation on the end caps. Thus

F ′
ext = vdm/dt′ − F ′

rad (2.13)

and the work due to the external force is just

W ′ =
∫

F ′
extvdt′ =

∫
v2dm −

∫
vF ′

raddt′. (2.14)

We have already computed the second term on the right. From Eq. (2.11), it is just
Hasenöhrl’s 4

3Eβ2. The first term on the right is simply Δmv2. It is now necessary
to use the relativistic result that Δm must be equal to minus the energy lost by the
end caps (divided by c2), i.e., Δm = −E/c2 where E is the energy radiated into,
and therefore the energy content of, the cavity. Thus, the total work performed by
external forces is

W ′ = −E
v2

c2
+

4
3
E

v2

c2
=

1
3
E

v2

c2
. (2.15)

Whereas Hasenöhrl equated the external work to the kinetic energy of the radiation
in the cavity, we must now consider the entire energy of the system, radiation plus
blackbody end caps A and B. We again use the relativistic result that the change of
energy of the end caps is, in the lab frame, given by γΔmc2 which to second order
in β, is given by −E(1 + 1/2β2).1 Then conservation of energy yields

W ′ =
1
3
Eβ2 = E′ − E

(
1 +

1
2
β2

)
. (2.16)

Finally, we define the kinetic energy of the radiation to be

(E′ − E) =
5
6
Eβ2. (2.17)

1 One might argue that it is inappropriate to use the relativistic results Δm = −E/c2 and
E′ = γΔmc2 in an analysis that purports to derive mass-energy equivalence. However, the
reader is reminded that the present anlaysis is, indeed, relativistic and these two relations are
known to be true for any bound, stable system by virture of the theorems of von Laue [1911]
and Klein [1918] (see Section 4).
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If one were to interpret this kinetic energy as due to an effective mass of the radiation,
as did Hasenöhrl, i.e., (E′ − E) = 1

2meff v2, then one finds that

meff =
5
3
E/c2, (2.18)

This value is not Hasenöhrl’s 8
3E/c2; however, neither is it E/c2 as one might expect

from special relativity.
One might also choose to determine the effective mass from momentum conserva-

tion rather than energy conservation. Because the velocity is constant, this result is
easily deduced from the above analysis. The total momentum impulse to the system
delivered by external forces is

ΔP ′
ext =

∫
F ′

extdt′ =
1
v

∫
vF ′

extdt′ = W ′/v =
1
3
E

v

c2
. (2.19)

The change in momentum of the end caps, to first order in v/c, is Δmv = −Ev/c2.
Therefore, by conservation of momentum,

ΔP ′
ext = Δmv + P ′

rad = −(E/c2)v + P ′
rad (2.20)

where P ′
rad is the net momentum of the radiation. Then from Eq. (2.19)

P ′
rad =

4
3
(E/c2)v. (2.21)

Attributing this momentum to an effective mass of the radiation, i.e., P ′
rad = meff v,

implies that

meff =
4
3
E/c2, (2.22)

which is different from both of the results discussed above. In order to make sense
of all this, we turn to the special relativistic definition of energy and momentum for
radiation.

2.2 Energy-momentum tensor

It is straighforward to calculate a lab frame expression for the radiative energy in
the cavity using Eq. (2.3) and integrating over the times it takes radiation from the
two end caps to fill the cavity (see Eq. 2.7). The total radiative momentum in the lab
frame can be computed in the same way, noting that radiative momentum is radiative
energy divided by the speed of light and taking into account the opposite directions
of the momenta emitted from the two end caps. A more direct way of obtaining these
results is simply by transforming the energy-momentum tensor of the the radiation
from the cavity frame to the lab frame. In addition, this formalism will be useful in
our anlaysis of Hasenöhrl’s second gedanken experiment in Section 3.1 below.

The energy-momentum tensor for blackbody radiation (in the cavity frame) is the
same as for a perfect fluid with equation of state p = ρ/3 and has the form, i.e.,
T 00 = ρ, T 0i = T i0 = 0, T ij = p δij , where ρ and p represent the energy density and
pressure of the radiation in the cavity frame. Because T μν is a tensor quantity, it is
straightforward to express it in any frame as

T μν =
1
c2

(ρ + p)uμuν + ημνp. (2.23)
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Here, all the symbols have their usual meanings: u ≡ (γc, γv) is the four velocity
of the frame, v is the three-velocity, γ ≡ (1 − β2)−1/2 and the metric tensor ημν ≡
(−1, +1, +1, +1). Greek indices range from 0 to 3 and Latin indices take on the
values 1 to 3. Thus, in the lab frame

T ′00 = (ρ + p)γ2 − p = ργ2 +
ρ

3
(γ2 − 1), (2.24)

and
T ′0x = (ρ + p)γ2 v

c
=

4
3
ργ2 v

c
(2.25)

where x indicates the direction of motion which is parallel to the cavity axis.
Because T ′00 represents energy density, the total energy in the lab frame is

E′ =
∫

T ′00dV ′ (2.26)

where dV ′ = V/γ is the volume element in the lab frame. Therefore,

E′ = γ−1T ′00V (2.27)

and from Eq. (2.24),

E′ = γE

(
1 +

β2

3

)
= E

(
1 +

5
6
β2

)
+ O(β4). (2.28)

This expression is the same as Eq. (2.17) and indicates that, to second order in β,
the work W ′ in Eq. (2.15) is consistent with the relativistic expression for energy in
Eq. (2.26).

Similarly, from Eq. (2.25), the total momentum of the radiation in the lab frame is

P ′ =
1
c

∫
T ′0xdV ′, (2.29)

or
P ′ =

4
3
Eγ

v

c2
=

4
3
E

v

c2
+ O(β3). (2.30)

Likewise, that this expression is the same as Eq. (2.21) indicates that Eq. (2.29) is,
indeed, the relativistic momentum of the blackbody radiation in the lab frame.

We are left with the dilemma that there seem to be two different effective masses,
meff = 5

3E/c2 and meff = 4
3E/c2, associated with blackbody radiation and neither of

these is the expected meff = E/c2. This is a direct consequence that our definition
of the total radiative energy and momentum,

∫
T ′μ0dV ′, is not a covariant expres-

sion, i.e., (E′, P ′i) is not a proper 4-vector. That the total energy/momentum of an
extended system behaves this way lies at the center of the previously mentioned “ 4

3
problem” of the self-energy of the electron. We will return to this issue after analyzing
Hasenöhrl’s second gedanken experiment.

3 The slowly accelerating cavity

3.1 Hasenöhrl’s second thought experiment

Hasenöhrl’s first gedanken experiment, suddenly switching on two blackbody end-
caps that subsequently fill a cavity with radiation, may perhaps seem a bit contrived.
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A more natural process would be to accelerate a cavity already filled with blackbody
radiation and this is precisely what Hasenöhrl considered in his second paper (H2). On
the other hand, an accelerating blackbody cavity is a more complicated system. In par-
ticular, one must worry whether or not the radiation remains in thermal equilibrium
during the acceleration and whether or not the accelerated blackbody endcaps change
their emission properties. Hasenöhrl was well aware of such problems. He sought to
mitigate them by imagining that the process be carried out reversibly/adiabatically
by requiring the that the velocity change happens “infinitely slowly”. He also envi-
sioned blackbody endcaps with heat capacities so small that their heat contents were
negligible; their only purpose is to thermalize the radiation. In our analysis, we obviate
the problem of thermal equilibrium by assuming the acceleration has been in effect
for a very long time so that the cavity comes to eqilibrium. Because of the absolute
frame of the ether, this assumption wasn’t availible to Hasenöhrl. Even so, in our
analysis we must assume that the acceleration is small in the sense that aD/c2 � 1.

As in his first gedanken experiment, Hasenöhrl computed the work required, in
this case, to accelerate the cavity to a speed v. Initially, he obtained the same result as
in H1, i.e., W = 4

3Eβ2, which implied that m = 8
3E/c2. After Abraham pointed out a

simpler way to calculate the mass, as the derivative of the electromagnetic momentum
with respect to velocity: m = d(4

3Ev/c2)/dv = 4
3E/c2, Hasenöhrl uncovered a factor

of two error in H2, which brought him into agreement with Abraham. He subsequently
published the correction in paper H3. This is, perhaps, why some have concluded that
Hasenöhrl did nothing different from Abraham. However, Abraham’s analysis was of
the classical electron, while Hasenöhrl’s was of blackbody radiation.

Hasenöhrl’s calculation in H2 is extremely involved. He did not calculate the work
directly, but rather calculated the small change in energy of the already filled cavity
due to an incremental change in velocity. He equated the difference between this
energy and that radiated by the endcaps to the incremental work performed on the
system. We now present a modern analysis of this gedanken experiment.

Suppose that the cavity is already filled with blackbody radiation and assume
that the acceleration has been applied for a sufficiently long time that the cavity
is in equilibrium. This doesn’t violate the condition that the cavity is intially at
rest in the lab frame; we simply choose the lab frame to be the inertial frame that is
instantaneously comoving with the cavity at t = 0. We also assume that the blackbody
end caps each radiate according to Planck’s law when observed in an instantaneously
co-moving inertial frame. That is, we assume that an ideal blackbody is not affected
by acceleration. This is analogous to the special relativistic assumption that ideal
clocks are not affected by acceleration. Of course, whether or not real blackbodies or
real clocks behave this way is open to question; however, one might expect that this
is the case for very small accelerations. In any case, this is our ansatz that we will
justify later. Finally, we ignore the mass of the cavity. One needn’t assume the mass is
negligible but rather only that including it doesn’t change the results of the analysis.
This will be justified shortly using the results of Section 3.2.

With these assumptions, it is straightforward to demonstrate that, in an insta-
neously comoving frame, the radiation is isotropic at every point in the cavity. This
follows directly from Liouville’s theorem, i.e., phase space density is constant along
every particle trajectory. For photons, phase space density is proportional to iν/ν3

(e.g. Misner et al. 1973). We assume that at the blackbody end cap, iν is given by
the Planck law and is, therfore, isotropic. Then the intensity of the radiation at a
perpendicular distance x from the trailing end cap is given by

iν(x) =
(

ν

νe

)3

iνe (3.1)
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where νe indicates the frequency of the photon emitted from the trailing end cap
and ν the frequency of that same photon at the point x. It is straightforward to show
that in the instantaneously co-moving frame these two frequencies are related by

ν ≈ νe

(
1 − ax

c2

)
(3.2)

where a is the acceleration of the cavity. The relation is valid regardless of where on
the end cap the photon originated. (This is the equivalent of gravitation redshift to
which we will return in Section 3.2.) Thus

iν(x) =
(
1 − ax

c2

)3

iνe . (3.3)

Because iνe is given by the Planck function and therefore independent of direction,
the implication is that iν is also isotropic. Of course, one must consider the Doppler
shifted photons emitted from the leading encap and these photons are blue shifted.
It turns out that in order to be in thermal equilibrium, the leading end cap must be
at a lower temperature than the trailing end cap with the result that the intensity
of photons emitted from the leading end cap is precisely the same as that of the
photons emitted from the trailing end cap. (This argument will be elaborated on in
Section 3.2.) The result is that, at least to first order in ax/c2, the radiation in the
cavity is istropic.

In this case, we can again use the perfect-fluid form of the stress-energy tensor
Eq. (2.23) to describe the radiation. From conservation of energy/momentum we know
that in any inertial frame T μν

,ν = 0 within the cavity. The spatial part (μ = i) of
this relation can be expressed in terms of the pressure, energy density and ordinary
vector velocity v as [Weinberg 1972]

∂v
∂t

+ (v · ∇)v = −c2(1 − β2)
(ρ + p)

[
∇p +

v
c2

∂p

∂t

]
(3.4)

where v is the velocity of the cavity in the lab frame. (In all that follows, we refrain
from distinguishing primed and unprimed frames since all calculations will be carried
out in the inertial laboratory frame.) Because the cavity is assumed to be in equilib-
rium, the co-moving inertial frame pressue p and density ρ are independent of time.
In addition, for small velocities we can discard terms that are second order in β2 and
the x component of this relation becomes

∂p

∂x
= − (ρ + p)

c2
= −4pa

c2
. (3.5)

To first order in ax/c2, the solution to Eq. (3.5) is

p = p0

(
1 − 4xa

c2

)
= p0 − 4

3c2
ρ0ax (3.6)

where p0 and ρ0 are the radiation pressure and energy density at the trailing end
of the cavity. Finally, the forces that must be applied to the trailing and leading
end caps of the cavity in order to maintain the acceleration must be F+ = p0A and
F− = −p0A + (4ADρ0/3c2)a where A is the area of each end cap and D is the length
of the cavity. Therefore, the total force on the cavity must be

F = F+ + F− =
4ADρ0

3c2
a =

4
3

E

c2
a (3.7)
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where E is, to lowest order, the radiation energy in the cavity co-moving frame.
We have made several assumptions in this derivation that need justification. First,

we assumed that Da/c2 � 1. This assumption is the requirement that the change in
velocity of the cavity in one light crossing time is much less than the speed of light,
the small acceleration condition. We have neglected any change in p and ρ in the
transverse directions. The mirrored sidewall of the cylindrical cavity has the same
effect on the radiation in the cavity as encaps of infinite transverse extent, in which
case pressure and density only depend on x. The approximation that E = ρ0AD
neglects terms of order Da/c2 but these only change the total force by terms that
are second order in this quantity. In addition, we did not address what constitutes
a constant acceleration of the cavity. Hasenöhrl’s pre-relativistic scenario assumed a
rigid cavity. In our calculation, we interpret the constant acceleration to be such that
the cavity is Born rigid, that is, the cavity remains the same length in all instaneous
co-moving intertial frames as would be expected for a cavity in an equilibrium state.
Born rigid acceleration requires that the acceleration al of the leading end cap is
related to the acceleration at of the trailing end cap by [Newman & Janis 1959]

al =
at

1 + atD/c2
. (3.8)

Therefore, the approximation that al ≈ at ≈ a again neglects terms of order Da/c2

and only changes the net force by terms second order in this quantity. Finally, we show
in Section 3.2 that the fractional changes in temperature and pressure of blackbody
radiation in an accelerated frame are of order aL/c2 where L is the relevant dimension
of the system in the direction of the acceleration. Therefore, one might expect that the
deviation of a blackbody radiator (or an electromagnetic clock for that matter) in an
accelerated frame would be of order aL/c2 where L is some characteristic length of the
process. For a blackbody radiator (or atomic clock) L might be the size of an atom,
or the mean free length of a photon within the blackbody absorber, or perhaps the
wavelength of the radiation. In any case, because L is much, much smaller than the
size of the cavity, such effects are negligible. This provides justification for assuming
that the blackbody end caps do, indeed, radiate according to Planck’s Law.

If we identify the effective mass of the radiation in terms of F = meff a, then
Eq. (3.7) implies that

meff =
4
3
E/c2 (3.9)

in agreement with our momentum analysis of Hasenöhrl’s first gedanken experiment in
Section 2.1 and with what Hasenöhrl found in his second gedanken experiment albeit
using a conservation of energy argument. We can reproduce his energy argument
result simply by integrating the net force in Eq. (3.7)

W =
∫

Fvdt =
4
3

E

c2

∫
avdt =

2
3
Eβ2, (3.10)

which is precisely what Hasenöhrl found. Upon equating this work with kinetic energy
of the radiation expressed as meff = 1/2mv2, he found that the effective mass was
that given by Eq. (3.9). On the other hand, our work/energy analysis of H1 found
that meff = 5

3E/c2. Where have we (and Hasenöhrl) gone wrong?
Hasenöhrl was certainly familiar with Lorentz-Fitzgerald contraction and, in fact,

invoked it in H2 and H3, although, not in his calculation of the work performed by the
external forces. Because a Born rigid object has constant dimensions in instanteously
co-moving frames, its length in the lab frame is Lorentz contracted. This is only
approximately so. Because of their different accelerations, the velocities of the two ends
of the cavity are not the same in the lab frame. Never the less, the usual expression
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for Lorentz contraction is valid to second order in β. Therefore, the distance moved
by the leading end cap is less than that moved by the trailing end cap by an amount,
D − D/γ ≈ 1

2Dβ2. The work performed by the external forces in accelerating the
cavity from rest to a velocity v is then

W =
∫

F+v+dt +
∫

F−v−dt =
∫

F+Δx+ +
∫

F−Δx− (3.11)

where Δx+ − Δx− ≈ 1
2Dβ2. Substituting the expression for F+ and F− from above

we find,

W =
4ADρ0

3c2
aΔx− + Ap0(Δx+ − Δx−) =

4ADρ0

3c2
aΔx− + Ap0

1
2
Dβ2. (3.12)

Now Δx+ = Δx− + O(β2) and the displacement Δx is related to the velocity v and
acceleration a by v2 ≈ 2aΔx. Also Ap0D ≈ E/3 and ADρ0 ≈ E. Thus the net work
performed by the forces in the lab frame is

W =
5
6
Eβ2. (3.13)

Setting this equal to 1
2meff v2 gives meff = 5

3E/c2, precisely the same result as we got
from our conservation of energy analysis of Hasenöhrl’s first gedanken experiment.

So it seems that a proper analysis of Hasenöhrl’s two gedanken experiments give
consistent results and are also consistent with the relatistic expressions for energy
and momentum of blackbody radiation. The problem is that the results from energy
conservation imply an effective mass that is different from that implied by conservation
of momentum and both of these are different from the meff = E/c2 that we are led to
expect from special relativity. This dilema is closely associated with a similar situation
for classical models of the electron and we return to these issues in Section 4. First,
however, we consider an analogous situation of a blackbody cavity at rest in a uniform,
static gravitational field.

3.2 Blackbody cavity in a static gravitational field

Suppose the cylindrical blackbody cavity is at rest in a static, uniform gravitational
field with the axis of the cavity in the direction of the field. We again use Liouville’s
theorem, Eq. (3.1), this time in combination with the usual equation for the gravita-
tional redshift of photons, i.e.,

ν ≈ νe

(
1 − gx

c2

)
(3.14)

where νe is the frequency of a photon emitted from the bottom end cap, ν is the
frequency of that same photon at a height x above the bottom end cap, and g is the
local acceleration of gravity. Of course, by the equivalence principle, this expression
is the same as Eq. (3.2) with g = a. Combining Eqs. (3.1) and (3.14) again yields
Eq. (3.3) with a = g, i.e., the upward intensity of radiation at point x due to photons
emitted from the bottom end cap. The upward directed intensity of the radiation
incident on the top end cap iν(D) due to the intensity of radiation emitted by the
bottom end cap iνe(0) is given by

iν(D) =
(

1 − gD

c2

)3

iνe(0). (3.15)
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The total flux incident on the upper end cap is

fu =
∫ ∫

iν(D)dνcos(θ)dΩ =
(

1 − gD

c2

)4 ∫
iνe(0)dνe

∫
cos(θ)dΩ. (3.16)

The integrals on the right hand side of this equation are well known and their product
is given by σT (0)4 where T (0) is the temperature of the lower end cap and σ is
the Stefan-Boltzmann constant. On the other hand, the flux emitted by the upper
blackbody end cap is the usual σT (D)4. These two fluxes must be equal if the system is
in equilibrium, thus T (D) = (1−gD/c2)T (0). Using this relation, it is straightforward
to show that the downward intensity at an interior point x due to photons emitted
from the upper end cap is equal to the upward intensity of the photons emitted from
the lower end cap at the same point, as was asumed in Section 3.1.

In fact, it is easily demonstrated that the radiation at any point x in the
interior of the cavity has a blackbody spectrum characterized by a temperature
T (x) = (1 − gx/c2)T (0). From the Planck formula we know that the phase space
density of blackbody radiation is

iν
ν3

∝
(
1 + e

hν
kT

)−1

. (3.17)

We assume that the radiation emitted from the bottom end cap has a blackbody
spectrum and, therefore, obeys this relation. By Liouville’s theorem, the phase space
density of the radiation at point x, is equal to that of the emitted radiation, i.e.,

iν
ν3

=
iνe

ν3
e

∝
(
1 + e

hνe
kT (0)

)−1

=
(
1 + e

hν
kT (x)

)−1

(3.18)

where from Eq. (3.14) T (x) ≡ (1− gx/c2)T (0). Therefore, the radiation at x also has
a blackbody spectrum with a characteristic temperature T (x). One can easily demon-
strate that the same result is obtained by considering the gravitational blueshifted
photons emitted from the top end cap.

Now imagine that the top and bottom end caps of the cavity are held in place
not by internal cavity stresses but rather by external forces, i.e., the end caps are
otherwise free to slide up and down inside the cavity. The radiation pressure pushing
down on the lower end cap is p(0) = ρ(0)/3 ∝ T (0)4 while the pressue pushing up on
the upper end cap is p(D) = ρ(D)/3 ∝ T (D)4. Therefore, p(D) = (1 − aD/c2)4p(0).
The force required to support the bottom end cap is its weight, Mecg, plus the force
required to balance the pressure, p(0)A and the force required to support the top end
cap is clearly Mecg−p(D)A. In addition, of course, a force Mswg is needed to support
the side wall of the cavity. Finally the total force required to support the entire cavity,
including radiation, is

F ≈ Mg +
4ADp(0)

c2
g ≈

(
M +

4
3

E

c2

)
g (3.19)

where M = 2Mec +Msw is the total mass of the cavity. It is clear from this expression
that the weight of the radiation, meff g, implies an effective mass of 4

3E/c2, the same
as Hasenöhrl deduced and consistent with the results of our momentum analyses for
both of Hasenöhrl’s gedanken experiments. In the gravitational case there is no work
performed by the external forces and, hence, no analog of our work/energy analyses.
Eq. (3.19) also justifies neglecting the mass of the cavity in Section 3.1. Again, we
find a result that seems to contradict Einstein’s E = mc2.

This seeming contradiction and the connection with similar results for the classical
electron brings us to a more general discussion of the energy and momentum of
extended objects.
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4 Hasenöhrl, Fermi, and the classical model of the electron

In Sections 2 and 3 we found momentum convservation and energy conservation in
Hasenöhrl’s two gedanken experiments led to two different effective masses associated
with blackbody radiation, meff = 4

3E/c2 and meff = 5
3E/c2. Futhermore, these two

masses were found to agree with the standard expressions for energy and momentum,
i.e., E =

∫
T 00dV and P i = 1

c

∫
T 0idV . That these two expressions lead to different

effective masses is a direct consequence of the integrals not being Lorentz covariant,
i.e., E and P do not constitute a covariant 4-vector. If they did, it is straightforward
to show that the expressions for both energy and momentum would imply an effec-
tive mass of E0/c2, the Einstein relation. Suppose (E,P) is an energy/momentum
4-vector. In the zero momentum frame this is (E0, 0). A Lorentz boost to a frame
with velocity −v immediately gives

E = γE0 ≈ E0 +
1
2
E0β

2 = E0 +
1
2

E0

c2
v2 (4.1)

and
P = γE0

v
c2

≈ E0

c2
v. (4.2)

If one identifies the kinetic energy, E − E0, with 1
2meff v2 and the momentum with

meff v, both of these relations imply meff = E0/c2. A solution to the delimma might
be simply to redefine the total energy and momentum of an extended body, in this case
blackbody radiation, so that they are the components of a 4-vector. On the otherhand,
the two Hasenöhrl gedanken experiments present the same dilemma and these results
are derived from the work/energy theorem and conservation of momentum, neither
of which seems amenable to redefinition.

A similar situation occurs in the case for the energy and momentum of the elec-
tromagnetic field surrounding a charged spherical shell (the classical electron). It
is straightforward to show that the integral expressions for energy and momentum
give precisely the same two results as those for blackbody radiation, i.e., Eqs. (2.28)
and (2.30). Perhaps because most analyses make use of Newton’s 2nd law/momentum
conservation, historically such analyses deduced that meff = 4

3E/c2, hence, the
“ 4

3 problem”. One of the controversial issues is whether or not one must take into
account the forces needed to make stable the repulsive charge of the electron. Poincaré
(1906) was the first to consider the stability of the electron and introduced “Poincaré
stresses,” which were unidentified nonelectromagnetic stresses meant to bind the elec-
tron together. With the inclusion of these stresses, one finds that the effective mass of
the electron is, indeed, meff = E/c2 if one includes in E the contribution of Poincaré
stresses. (Poincaré suggested more than one model for stabilizing stress [Cuvaj 1968].)

Max von Laue (1911) was the first to generalize this conclusion. He demonstrated
that for any closed, static (extended) system for which energy and momentum are
conserved, i.e., T μν

,ν = 0, the energy and momentum computed according to

Pμ =
∫

T 0μdV (4.3)

do indeed comprise a 4-vector. Felix Klein (1918) extended Laue’s proof to time-
dependent, closed systems. The conclusion is that for any closed, conservative system
the total energy/momentum, defined by Eq. (4.3), is a 4-vector and, as a consequence,
meff = E0/c2. (For a simple version of Klein’s proof, see [Ohanian 2012].) As a
consequence of Klein’s theorem, it follows that the 4-momentum Pμ is related to
the 4-velocity uμ of the zero momentum frame center of mass (center of energy) by
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Pμ = (E0/c2)uμ (e.g., [Møller 1972]). It is then straightfoward to show that, for any
time-dependent, closed system, F = γ(E0/c2)a where E0 is the total energy in the
zero momentum frame, a is the acceleration of the zero momentum frame center of
mass, and F is the external force on the otherwise conservative system.

At first blush, the theorems of Laue and Klein might seem to contradict our
results for Hasenöhrl’s two gedanken experiments; however, neither of these satisfy
the Laue/Klein assumption that the system is closed. For the Hasenöhrl scenarios,
external forces (not included in T μν) are necessary to contain the radiation. If instead,
the radiation is contained by stresses in the cavity walls and these stresses are included
in T μν , then it is straightforward to show that the total energy and momentum from
Eq. (4.3) are consistent with meff = E/c2 where E is the total energy of the radiation
plus cavity. Hasenöhrl certainly supposed that the radiation was contained by the
cavity; however, he chose to consider the forces due to cavity stresses as external. This
is a legitimate and understandable point of view. After all, Hasenöhrl was interested
in the inertial mass of blackbody radiation, not the combined inertial masses of the
radiation plus cavity.

In two of his earliest papers, Fermi (1922 & 1923a) took another approach to solv-
ing the 4

3 problem, one that made no mention of the Poincaré stresses necessary to
stabilize the electron. Fermi maintained that the 4

3 problem for the classical electron
arises because the electron is assumed to be a rigid body, in contradiction to the prin-
ciples of special relativity. He applied the concept of “Born rigidity” to the electron,
which requires that given points in an object always maintain the same separation in
a sequence of inertial frames co-moving with the electron. Equivalently, Born rigidity
demands that the worldline of each point in the electron should be orthogonal (in the
Lorentzian sense) to constant-time hypersurfaces in the co-moving frames (see, eg.,
Pauli 1921). However, such constant-time hypersurfaces are of course not parallel to
those in the lab. A constant-time integration over the electron’s volume in its rest
frame assumes that two points on the electron’s diameter cross the t = 0 spatial hy-
persurface simultaneously, but this will not be the case in a Lorentz-boosted frame
[Boughn & Rothman 2011]. Fermi chose to evaluate the action by integrating over
the volume contained within the constant-time hypersurfaces in the co-moving frame
(equivalent to using Fermi normal coordinates, which he developed in an earlier pa-
per [Fermi 1923a]). In a sense, this choice renders the analysis covariant, i.e., indepen-
dent of the lab frame, and it is, perhaps, not surprising that the result of his analysis
is that F = (E/c2)a. The details of Fermi’s approach can be found in Jackson [1975]
and Bini [2011]. It should be emphasized that Fermi’s solution to the 4

3 problem,
unlike the Poincaré/Laue/Klein approach, is silent on any non-electromagnetic forces
that hold the electron together. Like Fermi, Fritz Rohrlich also sought to solve the
4
3 problem without addressing the stability of the electron. Rohrlich [1960] simply re-
defined the expression for total energy/momentum in Eq. (4.3) so that it is covariant
and, thus, constitutes a proper 4-vector.

In a second 1923 paper [Fermi & Pontremoli 1923b], Fermi and Pontremoli applied
the above prescription to solve Hasenöhrl’s cavity-radiation problem. They considered
the forces applied to a volume of radiation and restricted their attention to the slowly
accelerated case. Therefore, their results apply to Hasenöhrl’s second gedanken ex-
periment. They concluded that the acceleration of the radiation in the cavity requires
a force F = (E/c2)a independent of any forces (e.g., cavity stresses) that contain the
radiation. While it might seem that Fermi’s and Rohlich’s insistance on a covariant
approach is a reasonable demand, the resulting analyses do not seem to be capable of
capturing the physics of a Hasenöhrl-type problem. This should give one pause.

Whether the Fermi/Rohrlich approach or that of Poincaré, von Laue, and Klein
is the appropriate description of the classical electron remains a controversial sub-
ject and continues to foster arguments on both sides of the issues. A sample
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over the last 50 years includes papers by: Rohrlich [Rohrlich 1960; Rohrlich 1982];
Gamba [Gamba 1967]; Boyer [Boyer 1982]; Campos and Jiménez [Campos &
Jiménez 1986]; Campos [Campos et al. 2008]; and Bini et al. [Bini 2011]. The sec-
ond edition of Jackson’s Classical Electrodynamics [Jackson 1975] discusses both ap-
proaches. The interested reader is referred to these works. With regard to classical
models of the electron, both methods give the same result and the electron is, in any
case, fundamentally a quantum phenomenon.

On the other hand, these issues are not ambiguous in the case of Hasenöhrl’s black-
body cavity. In this case, neither of the approaches of the two schools is particularly
helpful. The Laue/Klein theorem cannot be invoked because the system is not closed;
the forces that contain the radiation are external to the system. We suspect that
that members of the Laue school would agree with this point of view. (Of course, if a
blackbody cavity is stabilized by stresses within the cavity walls, then the Laue/Klein
theorem would indeed apply with the result that F = (E/c2)a where E is the total
rest frame energy of the radiation and cavity.) On the other hand, Fermi’s own an-
laysis of Hasenöhrl’s slowly accelerating blackbody cavity yields a result in conflict
with our relativistic analysis. One suspects that precisely the same would be true for
a macroscopic charged spherical shell with the charge held in place by external forces.
(We plan to analyze this system elsewhere.)

We refrain from taking a point of view on the controversy regarding the structure
of the fundamentally quantum mechanical electron nor even will we argue that the
Fermi/Rohrlich definition of relativistic energy/momentum is invalid. On the contrary,
its covariant nature has a certain appeal. However, it is clear that the ideological
application of this notion without regard to the details of a system can lead one
astray. In particular, identifying E/c2 with the effective mass of blackbody radiation
leads immediately to F = (E/c2)a for Hasenöhrl’s slowly accelerating cavity, which
is in conflict with a proper relativistic analysis. One might argue that systems bound
by external forces rarely occur in problems dealing with relativistic mechanics. This
may be true; however, the purpose of Hasenöhrl’s gedanken experiment, and Fermi’s
response for that matter, was to answer foundational problems in physics. In this
sense Hasenöhrl’s meff = 4

3E/c2 is correct and Fermi’s meff = E/c2 appears to be
wrong.

One might argue that Fermi’s analysis, while not explicitly including the forces
necessary to contain the radiation, might finesse the problem by assuming Born rigid-
ity. On the other hand, our relativistic analysis also assumes Born rigidity and yet
arrives at a different result. Another possibility is that Fermi’s analysis somehow only
includes that part of the external force necessary to accelerate the radiation and ig-
nores that part of the force that stabilizes the cavity; however, how one might effect
such a separation of forces is not immediately obvious. Of course, it is possible that
Fermi simply misunderstood what Hasenöhrl meant by “external forces”. Perhaps the
important lesson of this exercise is that while E = mc2 is a ubiquitous and very valu-
able relation, it is not a “law of physics” that can be used indiscriminately without
regard to the details of the system to which it is applied.

It is often claimed that Einstein’s derivation of E = mc2 was the first generic
proof of the equivalence of mass and energy (see Ohanian [2009] for arguments to
the contrary). It is true that Hasenöhrl’s analysis was restricted to the inertial mass
of blackbody radiation; however, Einstein’s gedanken experiment involves radiation
emitted from a point mass and, futhermore, gives no indication how this occurs. If
it is radiation due to radioactive decay, as Einstein implies at the end of his pa-
per, then perhaps it is necessary to take into account the details of this process. In
any case, Einstein is clearly speaking about electromagnetic radiation, and so it is
difficult to conclude that his thought experiment should be taken as a general theo-
rem about mass and energy. Einstein’s great contribution was, perhaps, that based
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on his simple gedanken experiment, he conjectured that E = mc2 was broadly true
for all interactions. Over time, his conjecture was justified theoretically and verified
experimentally, but this was through the efforts of many scientists and engineers.

Fritz Hasenöhrl attempted a legitimate thought experiment and his analysis,
though hampered by a pre-relativistic world view, was certainly recognized as sig-
nificant at the time. Whether or not his analysis was completely consistent, one of his
conclusions, that the acceleration of blackbody radiation by external forces satisfies
F = 4

3 (E/c2)a, was correct, even if of limited applicability, and for this he should
be given credit. In addition, his gedanken experiment raises similar questions for the
classical electron, issues that remain of interest today. Hasenöhrl’s gedanken experi-
ments are worthy of study and are capable of revealing yet another of the seemingly
endless reservoir of the fascinating consequences of special relativity.
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Hasenöhrl, F. 1907, 1908. Zur Thermodynamik bewegter Systeme. Wiener Sitzungsberichte
116, IIa (9): 1391-1405 and 117, IIa (2): 207-215

Jackson, J. 1975. Classical Electrodynamics, 2nd edn. John Wiley and Sons, New York
Jammer, M. 1951. Concepts of Mass. Harvard University Press, Cambridge
Jammer, M. 2000. Concepts of Mass in Contemporary Physics and Philosophy, pp. 72–73.

Princeton University Press, Princeton
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