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Abstract. We study motion of a quantum wavepacket in a one-dimensional potential with correlated
disorder. Presence of long-range potential correlations allows for existence of both localized and extended
states. Weak time-dependent perturbation in the form of a fluctuating plane wave is superimposed onto the
potential. This model can be realized in experiments with optically trapped cold atoms. Time-dependent
perturbation causes transitions between localized and extended states. Owing to violation of space-time
symmetries, there arises atomic current which is codirectional with the wave-like perturbation. However, it
is shown that the perturbation can drag atoms only within some limited time interval, and then the current
changes its direction. Increasing of the perturbation bandwidth and/or amplitude results in decreasing of
the time of current reversal. We argue that onset of the current reversal is associated with inhomogeneity
of diffusion in the momentum space.

1 Introduction

It is well-known that cold atoms trapped in optical lat-
tices can serve as an excellent quantum simulator of solid-
state physics phenomena [1]. For example, creation of ar-
tificial magnetic fields in 2D lattices allow for studying
quantum Hall effect with exceptionally strong magnetic
fields [2–6] which are hardly achievable in real solid-state
experiments. Quantum ratchets with cold atoms [7–14]
can serve as simulators of the related photogalvanic phe-
nomena in solid-state nanostructures [15–23]. Besides, the
ratchet effect has self-contained meaning as a tool for con-
trollable transportation of atoms into some target region,
that is of great importance in nanoscale technologies like
quantum communication [24,25].

From the viewpoint of various solid-state applications,
it is reasonable to examine the possibility of gaining dc
current if the spatially periodic potential is replaced by
a random one. An example of a classical ratchet with a
disordered potential is presented in reference [26]. Indeed,
it is well-known that ballistic transport in 1D undriven
disordered potentials is prevented by scattering processes
which can give rise to the Anderson localization. How-
ever, external AC driving can significantly increase the
localization length or lead to delocalization even within
the tight-binding approximation [27–29] that does not
take into account Landau-Zener interband tunneling. As
number of frequency components in the driving increases,
the resulting transport transforms from subdiffusive to
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diffusive [30–37]. Landau-Zener tunneling results in energy
growth that also facilitates delocalization [38,39]. So, one
may expect that properly constructed external AC driv-
ing should give rise to directed ballistic current, i.e. the
ratchet effect, provided certain time-space symmetries of
the driving are violated. This is an important advantage of
the ratchet effect as compared to the action of stationary
directed forces: in the latter case eigenfunctions remain
exponentially localized that infers the insulating regime.

In the present work, AC driving is superimposed onto
smooth potential with correlated disorder. We consider
AC driving being a superposition of two optical lattices
whose amplitudes are small and subjected to broadband
modulation that is modeled using harmonic noise. With
proper choice of the phase shift between the modulating
signals, the driving force becomes a running plane wave
experiencing time and space fluctuations. This kind of
ratchets is known as travelling potential ratchets and con-
sidered in [40–45]. They can be used as quantum sim-
ulators of electron-phonon interactions in semiconduct-
ing materials [46–49]. This issue is of especial importance
as a promising way of electronic transport control using
the stimulated phonon emission that can be realized via
a SASER [50,51]. Interest to our configuration is sub-
stantially supported by recent results of reference [52],
where non-trivial dependence of current on the pertur-
bation strength was found for a somewhat similar system.

The paper is organized as follows. In the next section
we give detailed description of the model studied. In par-
ticular, we study spectral properties of the undriven sys-
tem and point out the presence of the mobility edge in
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Fig. 1. A typical realization of the potential U(x), λ = 2π/k0.

the energy space. Also, we introduce AC driving involving
harmonic noise and describe its basic properties. Section 3
contains results of numerical simulation. These results are
analyzed in Section 4 in terms of kinetic approach. In
Section 5 we summarize the results and outline ways of
further research.

2 Model description

2.1 Time-independent part

One-dimensional motion of an atomic wavepacket along
the x-direction is governed by the Schrödinger equation

i�
∂Ψ

∂t
= − �

2

2M
∂2Ψ

∂x2
+ [U(x) + εV (x, t)]Ψ, (1)

where M is atomic mass, ε is a small parameter. Here-
after we use scaling corresponding to M = 1 and � = 1.
Function U(x) describes the time-independent part of the
optical potential. We construct it as superposition of plane
waves with random wavevectors and phases:

U = AŨ, Ũ =
∑

j

cos(k0x cos θj + χj). (2)

Here θj and χj are random phases with uniform distribu-
tion in the interval [0 : 2π], and k0 = 1. Coefficient A is
determined by the normalization condition

A =
(
2

〈
Ũ2

〉

x

)−1/2

, (3)

where 〈. . .〉x denotes averaging over x. An example of U(x)
is presented in Figure 1. According to the figure, U(x) can
be regarded as some randomly-distorted lattice potential.
It can serve as a model of an optical potential created by
optical speckle pattern.

Autocorrelation function of the potential (2) obeys the
following formula [53]:

〈U(x)U(x+ d)〉 ∝ J0(d), (4)

where J0 is the zero-order Bessel function of the first
kind. Power-like asymtotics of J0 implies the presence of
long-range correlations. Long-range correlations result in
the existence of the mobility edge, i.e. the energy bound-
ary separating localized and delocalized states [54]. A sim-
ple intuition suggests that the transition to the delocaliza-
tion should occur with increasing of energy. The transition
should be reflected in the energy spectrum, in particular,
in statistics of level spacings [55–57]

s = εn+1 − εn, (5)

where εn and εn+1 are two consecutive unfolded energy
values. Unfolding is the procedure used in order to extract
the fluctuating part in the energy level density. Unfolded
energy values are related to the original ones by means of
the formula

εi = N̄(Ei), (6)

where

N̄(E) =

E∫

−∞
ρ̄(E′) dE′. (7)

Here ρ̄(E) is the mean level density being smooth approx-
imation to the actual level density. In the present work,
we use the so-called local unfolding [58], when ρ̄(E) is

ρ̄(Ei) =
2ν

Ei+ν − Ei−ν
, (8)

with ν = 5.
In the insulating regime corresponding to the disorder-

induced localization, eigenstates belonging to the same
energy band do not substantially overlap in space, there-
fore, their energies are statistically independent and obey
Poissonian distribution of level spacings

P (s) =
1
〈s〉 exp

(
− s

〈s〉
)
, (9)

where 〈s〉 is the mean level spacing. Non-zero conductivity
implies overlapping of eigenstates that gives rise to level
repulsion, whereby level spacing statistics is described by
the Wigner surmise

P (s) =
π

2
s

〈s〉2 exp

(
− πs2

4 〈s〉2
)
. (10)

Finally, consider the regime of free motion that is not af-
fected by the potential. In this case energy spectrum inside
a sample of length L with perfectly reflecting boundaries
is described by the simple formula

En =
2π2

�
2

L2M
n2. (11)

Absence of potential-induced fluctuations implies uniform
density of unfolded levels with constant level spacing s. In
the model we consider, this regime should be relevant for
the range of high energy values.
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Fig. 2. Level spacing distributions in various energy bands.
(a) E ≤ 1 (dashes) and 1 < E ≤ 4 (thick solid),
(b) 4 < E ≤ 12.

Figure 2 demonstrates level spacing distributions cor-
responding to the different energy bands. Level spacing
distributions were obtained by solving numerically the sta-
tionary Schrödinger equation with ε = 0 for a long sample
(L = 10 000π). In the lowest energy region, level distribu-
tion is well described by the Poissonian law (9), indicating
localization of eigenstates. In the moderate energy region,
1 < E ≤ 4, level spacing distribution significantly deviates
from the Poissonian form and is non-monotonous, reveal-
ing the presence of level repulsion. Level spacing statistics
in the high-energy range represents sharp peak at s = 〈s〉.
It corresponds to the absence of level fluctuations in the
ballistic regime. So, one can deduce the existence of the
mobility edge in the range 1 < E ≤ 4, separating low-
energy localized states and high-energy metallic ones.

2.2 Time-dependent perturbation

As is shown in the preceding section, potential (2) al-
lows for extended states despite of disorder. Localized
and extended states are separated by the mobility edge.
This gives rise to the possibility for transition between
the insulating and conducting regimes by means of exter-
nal time-oscillating driving. If the driving does not satisfy
certain space-time symmetry relations, the resulting cur-
rent can be directed [59,60]. Following [44,61], we use the
perturbation V (x, t) expressed as:

V (x, t) = f(t) sinx+ f(t+ τ) cosx, (12)
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Fig. 3. Realizations of harmonic noise for Γ = 0.1 (dashes)
and Γ = 0.5 (solid).

where f(t) is a broadband signal. Thus, V (x, t) is given
by superposition of two lattice potentials subjected to
amplitude modulation. Note that the modulating signal
f(t + Δ) is the replica of the signal f(t) with the time
shift τ .

In experiments, broadband amplitude modulation of
optical lattices can be realized using coherent frequency-
modulated signals. However, in the present work we
consider a more complicated case, when non-zero band-
width of modulating signals is associated with uncontrol-
lable stochastic processes. Nevertheless, it is assumed that
the modulating signal can be recorded and reproduced.
In particular, we model f(t) as the so-called harmonic
noise [62,63]. Harmonic noise is described by coupled
stochastic differential equations

ḟ = y, ẏ = −Γy − ω2
0f +

√
2βΓξ(t), (13)

where Γ is a positive constant, and ξ(t) is Gaussian white
noise. Realizations of harmonic noise can be calculated by
means of mapping

fn+1 = fn + snh+
1
2
αnh

2 + γZ2(h),

sn+1 = sn + αnh+ γZ1(h) − 1
2
Γαh2

+ ΓγZ2(h) − 1
2
Ω2snh

2, (14)

where h is the time step, αn = −Γsn −Ω2fn, γ =
√

2βΓ .
Terms Z1 and Z2 are given by expressions

Z1(h) =
√
hY1, Z2(h) = h3/2

(
Y1

2
+

Y2

2
√

3

)
, (15)

where Y1 and Y2 are statistically independent Gaussian
noises with unit variance. Realizations of harmonic noise
with different values of Γ are exemplified in Figure 3.

The terms f(t) and f(t + τ) in (12) correspond to
one and the same realization of harmonic noise and differ
only by the temporal shift τ . The first two moments of
harmonic noise are given by:

〈f〉 = 0,
〈
f2

〉
=

β

ω2
0

. (16)
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We set β = 1, that is, the perturbation strength is solely
determined by the parameter ε entering into (1). In the
case of low values of Γ , the power spectrum of harmonic
noise has the unique peak at the frequency

ωp =

√
ω2

0 − Γ 2

2
(17)

with the width

Δω =
√
ωp + Γω′ − √

ωp − Γω′, (18)

where
ω′ =

√
ω2

0 − Γ 2/4.

One can easily find that

f(t) → sin(ω0t+ φ0),

as Γ → 0. Setting f(0) = 1, y(0) = 0, and

τ =
π

2ω0
, (19)

one finds
V (x, t) = sin(x− ω0t) (20)

in the case of Γ = 0. Hence, it turns out that V (x, t) for
Γ > 0 behaves as a fluctuating plane wave [44].

Owing to broken space-time symmetries, perturba-
tion (12) can give rise to directed transport. In the semi-
classical regime and in the case of the periodic poten-
tial U(x), direction of the current coincides with the
direction of the perturbation phase velocity [44], that
is, the perturbation creates force that drags atoms to-
wards x→ ∞. Transition of atoms from finite to infinite
regime becomes possible due to noise-induced destruc-
tion of dynamical barriers in classical phase space [61].
More intricate behaviour is observed in the deep quan-
tum regime, when interband tunneling is negligible, and
system dynamics is restricted to the lowest energy band.
As it was shown in reference [52], current direction qual-
itatively depends on the perturbation amplitude. For low
amplitude values, current velocity grows with increasing
of the amplitude, until it becomes equal to the phase
velocity of the perturbation. However, as the amplitude
of the perturbation exceeds some threshold value, the
current velocity rapidly decreases and changes its sign,
that is, there appears transport in the opposite direction.
This phenomenon is closely related to the specific form
of Bloch oscillations. Addition of harmonic noise into the
perturbation should, however, enhance interband transi-
tions whereby violating the single-band picture of motion.
This issue was addressed for the model of a driven tilted
lattice [64,65].

Taking into account some similarity between pertur-
bations used in our model and the model considered in
reference [52], it is reasonable to examine transport prop-
erties for different values of the perturbation amplitude ε.
In the present work we consider two cases, ε = 0.05 and
ε = 0.25, referring to them as weak and moderate driving,
respectively. Both these cases are considered in the next
section by means of numerical simulation.
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Fig. 4. Ensemble-averaged position variance as function of
time. (a) ε = 0.05, (b) ε = 0.25.

3 Numerical simulation

In the present section we study transport properties of
cold atoms in the optical potential described in the pre-
ceding section. We integrate numerically the Schrödinger
equation (1) for the ensemble of 1000 realizations of the
potential. The initial condition is chosen in the Gaussian
form

Ψ(x, t = 0) = C exp
[
− (x− x0)2

4σ2
x(0)

]
, (21)

where σx(0) = 10π, x0 = 0, C is the constant determined
by the normalization condition

∫
|Ψ(x)|2 dx = 1. (22)

3.1 Transport in the case of weak driving:
dragging regime

Let us begin with the discussion of numerical results
corresponding to the case of weak driving ε = 0.05.
Figure 4a demonstrates time dependence of ensemble-
averaged position variance

σx =
1√
J

√√√√
J∑

j=1

(Qj − r2j ), (23)



Page 5 of 9

-20
 0

 20
 40
 60
 80

 100
 120
 140
 160

 0  100  200  300  400  500

<x
>

t/π

(a)

Γ=0
Γ=0.1
Γ=0.5

-100

 0

 100

 200

 300

 400

 500

 0  100  200  300  400  500

<x
>

t/π

(b)

Γ=0
Γ=0.1
Γ=0.2
Γ=0.3
Γ=0.4
Γ=0.5

Fig. 5. Mean position as function of time. (a) ε = 0.05,
(b) ε = 0.25.

where J = 1000 is the number of potential realizations,
rj is wavepacket displacement calculated with the jth
realization of the potential via the formula

rj =
∫
x|Ψ (j)(x)|2 dx, (24)

and Qj is squared displacement determined as:

Qj =
∫
x2|Ψ (j)(x)|2 dx. (25)

Hereafter Ψ (j)(x) means the solution of the Schrödinger
equation (1) with jth realization of the potential. The
curve corresponding to the case ε = 0 is also plot-
ted for comparison. Time-dependent perturbation signifi-
cantly enhances wavepacket spreading as compared to the
undriven case for all values of the noise parameter Γ . Lin-
ear growth of σx indicates excitation of ballistic states.
The rate of spreading increases with increasing of Γ . So,
it turns out that broadening of the perturbation’s spectral
band enhances heating of atoms. Fast spreading is accom-
panied by relatively slow drift of a wavepacket towards
x → ∞, i.e. in the direction of the phase velocity of the
perturbation. The drift is illustrated in Figure 5a repre-
senting time dependence of mean position determined as:

〈x〉 =
1
J

J∑

j

rj . (26)
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Fig. 6. Ensemble-averaged spatial population imbalance as
function of time. (a) ε = 0.05, (b) ε = 0.25.

Thus, we observe dragging of atoms by the wave-like per-
turbation. Notably, directed flux in the presence of noise
is much larger than in the purely deterministic case Γ = 0
because noise leads to more extensive transitions between
localized and ballistic states. However, the rate of drift is
nearly the same for Γ = 0.1 and Γ = 0.5, as well as for
intermediate values of Γ (not shown). It means that en-
hancement of heating is partially supressed by fluctuations
of the perturbation wave.

It is also informative to consider time dependence of
the ensemble averaged spatial imbalance defined as:

〈W 〉 =
1
J

J∑

j=1

(
W+

j −W -
j

)
, (27)

where

W+
j =

∞∫

0

|Ψ (j)(x)|2 dx, W -
j =

0∫

−∞
|Ψ (j)(x)|2 dx. (28)

Figure 6a shows that the strongest growth of spatial popu-
lation imbalance is observed within the initial time period,
and then the growth becomes slower, although the imbal-
ance remains far from the maximally accessible value 1.
The behaviour of 〈W 〉 (t) reflects the process of energy
tranfer from localized states to ballistic ones having cer-
tain momentum value. It turns out that states with both
negative and positive momentum values are excited, with
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relatively small prevailence of the latter ones. As the frac-
tion of localized states decreases with time, the excitation
weakens, and growth of 〈W 〉 becomes slower.

It is important to emphasize that excitation of bal-
listic states is a stochastic process, therefore, transport
properties for some single realization can deviate signifi-
cantly from the picture drawn by statistical averaging. To
illustrate it, we calculate the function

F (rf) =

rf∫

−∞
ρr(r′) dr′, (29)

being the cumulative distribution of displacement values
at t = 500π for an ensemble of potential realizations. Fig-
ure 7a shows that nearly 20 percents of realizations ex-
hibit prevailence of transport in the opposite direction to
the dragging in the case of Γ = 0. Increasing of Γ allows
one to reduce fraction of such “anomalous” realizations to
nearly 10 percents. Thus, onset of directed current with
controllable direction is possible only with probability not
equal to one.

3.2 Transport in the case of moderate driving: onset
of current reversal

Now let us consider the case of the moderate driving,
ε = 0.25. According to Figure 4b, there is also ballistic
spreading of a wavepacket, but the rate of spreading is
increased approximately two times as compared with the

case of weak driving. As in the case of weak driving, ad-
dition of noise remarkably enhances spreading.

Time dependence of mean position looks in qualita-
tively different way. In the noiseless case Γ = 0, we ob-
serve the same regime of dragging as in the case of weak
driving, with significantly increased current velocity. How-
ever, as noise is added, the behaviour changes drastically.
Dragging persists only until some time horizon, and then
current changes direction. It is clearly demonstrated in
Figure 5b. The time of current reversal decreases with in-
creasing of Γ . Comparing Figures 5b and 6b, one can de-
duce that, despite of the current reversal, the majority of
atomic states remain in the range of positive values of x,
albeit their fraction decreases with time. It means that
backward current is produced by progressive accumulation
of atomic states with large negative velocity.

Onset of current reversal is also reflected in the distri-
butions of wavepacket displacements at t = 500π, demon-
strated in Figure 7b. In the noiseless case Γ = 0, almost
all realizations of potential give rise to positive displace-
ments. Inclusion of fluctuations increases probability of
backward displacement. For Γ = 0.5, backward displace-
ments dominate the overall statistics.

Thus, numerical simulation exhibits a somewhat un-
usual phenomenon of current reversal that occurs if the
noise parameter Γ is non-zero. Theoretical explanation of
this phenomenon is given in the next section.

4 Dynamics in the momentum space

The origin of the current reversal observed can be found
out if we examine wavepacket evolution in the space of of
momentum eigenstates

|m〉 = ψm =
1√
L
e(i/�)(pmx−Emt), (30)

where

pm =
2πm�

L
, Em =

p2
m

2M
,

m = −m0,−m0 + 1, . . . ,m0 − 1,m0. (31)

Temporal evolution of occupation probabilities

ρm =
∣∣∣∣
∫
ψ∗

mΨ dx

∣∣∣∣
2

(32)

can be described by the master equations [66]

dρl

dt
=

∑

m

Glm(ρm − ρm), (33)

where Gmn = |Hlm|2, where Hlm is the matrix element
responsible for transition between the momentum states l
and m. Hlm can be represented as a sum

Hlm = Ha
lm +Hb

lm +Hc
lm, (34)
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where

Ha
lm =

f(t)eiωlmt

L

L∫

0

eiΔplmx/� sinxdx, (35)

Hb
lm =

f(t+ τ)eiωlmt

L

L∫

0

eiΔplmx/� cosxdx, (36)

Hc
lm =

eiωlmt

L

L∫

0

U(x)eiΔplmx/� dx, (37)

Δplm = pl − pm, ωlm = (El − Em)/�. (38)

After integration, we find

Ha
lm =

{ i sgn(Δplm)
2

f(t)e−iωlmt, Δplm ± 1,

0, Δplm 	= 1
(39)

Hb
lm =

{ 1
2
f(t+ τ)e−iωlmt, Δplm ± 1,

0, Δplm 	= 1
(40)

Hc
lm = exp(−iωlmt)Ulm. (41)

Terms Ha
lm and Hb

lm correspond to resonant transitions
under action of the time-dependent perturbation V (x, t).
It is reasonable to average them over sufficiently long time
interval in order to eliminate short-time interference ef-
fects. This procedure corresponds to calculation of the
transition amplitudes by means of the selebrated Fermi’s
golden rule. The averaged terms are expressed as:

Ha
lm =

i

2T
sgn(Δplm)

T∫

0

f(t) exp(−iωlmt) dt, (42)

Hb
lm =

1
2T

T∫

0

f(t+ τ) exp(−iωlmt) dt. (43)

f(t) and f(t+ τ) can be represented as Fourier integrals

f(t) =
1
2π

∫
F (ω)eiωt dω, (44)

f(t+ τ) =
1
2π

∫
F ′(ω)eiωt dω. (45)

Substituting (44) and (45) into (42) and (43), respectively,
and taking the limit T → ∞, we find

Ha
lm =

i

2
sgn (Δplm)F (ω = ωlm) , (46)

Hb
lm =

1
2
F ′ (ω = ωlm/�) . (47)

Only the resonant contribution is taken into account in
these equations. Assuming that time of phase correlations
of f(t) is large compared to τ , we can use approximation

F ′(ω = ωlm) 
 eiωlmτF (ω = ωlm) . (48)

Validity of this approximation requires that noise band-
width Δω should not be large. It is satisfied for moderate
values of the noise parameter Γ .

Term Hc
lm corresponds to transitions caused by inco-

herent scattering on the random potential U(x). These
transitions lead to broadening of the momentum spec-
tra and remarkably affect wavepacket spreading. However,
this term is not resonant, and, after some finite time inter-
val, the transitions it causes weaken due to interference.
In addition, the scattering process does not influence the
directivity of transport because left-going and right-going
states are created with equal probabilities. As the trans-
port directivity is our major concern, we can take into ac-
count the effect of broadening by means of proper choice
of initial conditions in equation (33), while the contribu-
tion of the term Hc

lm into rate constants can be eliminated
by means of averaging over time. It implies that qualita-
tive (but not quantitative) description of directed current
variability can be obtained in terms of a reduced model
that does not involve the disordered potential. Thus, the
time-averaged matrix element reads:

H̄lm = F (ω = ωlm)
[
i

2
sgn(Δplm) + eiωlmτ

]
. (49)

Hence, we can find the corresponding transition rate

Glm = ε2S(ω = ωlm)

[
cos2 ωlmτ

+
(

sinωlmτ +
sgn(Δplm)

2

)2
]
, (50)

where S(ω) is harmonic noise power spectrum given
by [62]

S(ω) =
βΓ

π[ω2Γ 2 + (ω2 − ω2
0)2]

. (51)

Formula (50) infers that transitions in the halfspaces cor-
responding to negative and positive momentum values
have different rates. As spectral width of harmonic noise
is relatively small, we can use approximation

|ωlm| ≈ ω0. (52)

Then, taking into account (19), one can replace ωlmτ as
sgn(ωlm)π/2 and simplify (50) as:

Glm ≈ ε2S(ω = ωlm)
[
sgn(ωlm) +

sgn(Δplm)
2

]2

. (53)

We have sgn(ωlm) = −sgn(Δplm) for left-going states and
sgn(ωlm) = sgn(Δplm) for right-going ones. This means
that transitions between left-going momentum states are
much less extensive. Since only limited range of momen-
tum values corresponds to strongly coupled states, there
should be accumulation of left-going states which have
larger lifetimes.
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Fig. 8. Mean momentum calculated by solving equations (33)
as function of time. (a) ε = 0.05, (b) ε = 0.25.

To verify the above suggestion, we solved numerically
the system of master equations (33) with the Gaussian ini-
tial condition

ρm = A exp
(
− p2

m

2σ2
p

)
, (54)

where
A =

1∑
m
ρm

. (55)

We used relatively large momentum variance σp = 1 in
order to mimick the effect of scattering on the disorder
potential U(x). Figure 8 represents dependence of mean
momentum on time for various values of ε and Γ . Com-
parison of Figures 8a and 8b reveals evident similarity
between the cases of ε = 0.05 and ε = 0.25. Neverthe-
less, current reversal occurs in the former case on signifi-
cantly longer timescales. Indeed, after substitution of (53)
into (33) one can eliminate ε by rescaling time as t′ = ε2t.
Thus, it turns out that the plane-wave perturbation is able
to drag particles only within some limited time intervals
before the reversal. Reversals do not appear in data shown
in Figure 5a because the time interval considered is too
short. Broadening of the perturbation spectrum increases
number of efficiently coupled momentum states and re-
sults in more extensive diffusion in the momentum space.
Consequently, the reversal happens earlier. This explains
facilitation of transport with increasing Γ . It should be
noted that calculations for longer timescales reveal further
reversals, however, time interval between two succesive
reversals rapidly grows.

5 Summary

The present work is devoted to a simple one-dimensional
quantum model involving a disordered potential and time-
dependent perturbation in the form of a fluctuating plane
wave. This model can be realized experimentally with op-
tically trapped cold atoms. Also, it can serve as a toy
model for studying phonon-induced charge transport in
disordered wires.

The main result of the work is the onset of current
reversals which occur for non-zero values of the model
parameter quantifying fluctuations of the time-dependent
force. It is shown that this effect is a consequence of dif-
fusion inhomogeneity in the momentum space. Enhance-
ment of noise facilitates diffusion in the momentum space
and diminishes the time needed for the reversal onset.

It should be mentioned that influence of the
plane-wave-like perturbation onto dynamics of quantum
wavepacket was recently considered in reference [52]. In
that paper, it was found that atomic current can change
its sign as the perturbation amplitude increases. Despite
the results of reference [52] and this paper look similar, the
underlying mechanismes are different. In the model con-
sidered in reference [52], the plane-wave-like perturbation
leads to excursion of quasimomentum inside the lowest
energy band. In our model, dynamics is not restricted to
the lowest band, moreover, the crucial role in the reversal
onset is played by inter-level transitions, that is, energy of
atoms is not restricted by the first band. It should be em-
phasized that the onset of current reversals in our model
is a noise-induced effect accompanied by energy growth
and heating of atoms.

It is important to note that onset of current reversals
can be qualitatively described by means of the reduced
kinetic model that does not take into account effect of
the disordered background potential, that is, disorder does
not play crucial role for the reversals. It means that such
reversals can be readily observed in simpler models where
potential involves only fluctuating plane wave. We hope to
address this issue in forthcoming works. Another issue of
interest is how the current reversal effect manifests itself
under quantum-to-classical crossover.

This work is supported by grants from the Russian Founda-
tion of Basic Research (project 12-02-31416), and the joint
grant of the Far-Eastern and Siberian Branches of the Russian
Academy of Sciences.
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