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Abstract. We study charge transport in a graphene zigzag nanoribbon driven by an external time-periodic
kicking potential. Using the exact solution of the time-dependent Dirac equation with a delta-kick potential
acting in each period, we study the time evolution of the population transfer probability and the time-
dependent optical conductivity. By variation of the kicking parameters, the conductivity becomes widely
tunable.

1 Introduction

Ever since its experimental discovery a decade ago, the
physics of graphene has been a hot topic in condensed
matter physics (see Refs. [1–7] for reviews). One of the
most intensely studied class of problems concerns elec-
tronic transport in bulk or confined graphene monolay-
ers. We here focus on the particle dynamics in externally
driven graphene samples, where a general goal is to achieve
tunability of charge transport. A rich variety of predicted
and observed phenomena due to time-dependent fields
have been reported in recent publications [8–15].

In particular, reference [8] argues that time-periodic
spin-orbit interactions lead to an interesting time evolu-
tion of the spin polarization and of the optical conduc-
tivity. Particle transport can also be induced by a time-
dependent elastic deformation field [9], or in a.c. driven
graphene nanoribbons, where by adopting a tight-binding
model, the authors of reference [13] found a strong de-
pendence of transport properties on the geometry of the
ribbon edges. Furthermore, Ishikawa [14] studied electron
transport in graphene perturbed by a time-periodic vec-
tor potential, which results in an enhancement of inter-
band transitions. Finally, electron transport and current
resonances in the presence of a time-dependent scalar po-
tential barrier have been studied in reference [15], where
a resonant enhancement of both electron backscattering
and the currents across and along the barrier was reported
when the modulation frequencies satisfy certain resonance
conditions.

Ultrafast dynamics and particle transport in graphene
driven by ultrashort optical pulses have also been stud-
ied recently [16–22]. The experimental observation of a
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bright broadband photoluminescence in graphene inter-
acting with femtosecond laser pulses was reported in ref-
erence [18]. Moreover, the authors of reference [22] have
studied the modification of the bandstructure under ul-
trashort optical pulses and the carrier dynamics caused
by the optical response of graphene, arguing that the elec-
tron dynamics in the time-dependent electric field of the
laser pulse becomes irreversible, with a large residual con-
duction band population. In addition, the formation of a
laser-induced band gap was discussed in reference [20].

In this paper, we study electron transport in graphene
nanoribbons interacting with an external time-periodic
scalar potential represented by a sequence of δ-kicks. The
setup is schematically shown in Figure 1. Such a potential
could be created by applying laser pulses to free-standing
samples. Using the exact solution of the time-dependent
Dirac equation within one kicking period, we compute the
transport properties of the system, such as the proba-
bility current and the optical conductivity, as a function
of time. As we have discussed above, periodically driven
graphene could be realized through the interaction with
a.c. voltages [13], pulsed laser fields [23], surface acoustic
waves [24], or time-periodic straining [9]. Here we focus
on the case of ultrashort optical pulses [16–19].

Let us mention at this stage that some time ago, both
the classical and the quantum dynamics of systems inter-
acting with a delta-kicking potential have been extensively
studied in the context of nonlinear dynamics and quantum
chaos theory [25–27]. A remarkable feature of periodically
driven quantum systems is the quantum localization phe-
nomenon, which implies a suppression of the growth of
the average kinetic energy with time; for the correspond-
ing classical system, this energy grows linearly in time.
However, the case of delta-kicked graphene nanoribbons
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Fig. 1. Sketch of a kicked zig-zag graphene nanoribbon of
width Lx and length Ly . Ultrashort periodic pulses applied to
the nanoribbon act as kicking potential.

is more complicated due to the kicking-field-induced pop-
ulation transfer discussed below, which is also the rea-
son for interesting electronic and transport phenomena.
The main effect of the driving force is to cause inter- and
intra-band transitions, leading to excitation and “ioniza-
tion” of valence-band electrons to the conduction band.
Another effect caused by driving fields in graphene is an
effective band-gap opening or widening [20], which allows
one to tune the electronic properties using an external
time-dependent field. Below, we analyze the time evolu-
tion of the population transfer probability and the op-
tical conductivity in delta-kicked graphene nanoribbons.
We find that the population transfer probability effec-
tively describes intra- or inter-band anticrossings, where
the time-dependent effective density of states reaches a
local maximum when anticrossings take place. This effect
may increase the number of charge carriers in the con-
duction band, with a subsequent increase of the current
and of the optical conductivity. Indeed, as shown by our
analysis of the time-dependent conductivity in Section 3,
depending on the kicking parameters, the conductivity
may monotonically grow in time, while in other kicking
regimes, such a growth is suppressed.

The remainder of this paper is organized as follows. In
Section 2 we briefly recall the Dirac equation for graphene
zigzag nanoribbons, basically following the approach of
Brey and Fertig [28], and discuss the solution of the time-
dependent Dirac equation in the presence of the δ-kicking
potential. This solution is then utilized to compute the
time evolution of the population transfer probability, and,
in Section 3, the optical conductivity in different kick-
ing regimes. Finally, Section 4 contains some concluding
remarks. Below we often use units where � = 1.

2 Kicked graphene nanoribbon

2.1 Unperturbed Hamiltonian

In this work we study the electronic behavior of
kicked zigzag graphene nanoribbons, see Figure 1 for an

illustration, within the Dirac equation approach [28]. It is
well-established that low-energy quasiparticles in an ex-
tended graphene sheet are accurately described by the
massless two-dimensional (2D) Dirac Hamiltonian [1]

H0 = vF

(
0 px − ipy

px + ipy 0

)
, (1)

where px,y = −i∂x,y, and vF ≈ 106 m/sec denotes the
Fermi velocity. The 2×2 matrix structure of H0 is with re-
spect to sublattice space, corresponding to the (A/B-type)
basis atoms of graphene’s honeycomb lattice [1]. Since we
do not take into account electron-electron interaction ef-
fects here, the two different valleys (K points) as well
as the two spin projections decouple, and we can focus
on a single-valley spinless system in equation (1). The
spinor eigenstates of the zigzag nanoribbon with periodic
boundary conditions along the longitudinal y-direction
(see Fig. 1), are written as:

ψ(x, y) =
eikyy√
Ly

Φ(x), Φ(x) =

⎛
⎝ φA(x)

φB(x)

⎞
⎠ , (2)

where ky is the conserved wave number along the
y-direction. Periodic boundary conditions yield ky =
2πny/Ly with integer ny. To take into account the zigzag
edges at x = 0 and x = Lx, where Lx is the width of the
nanoribbon, we impose the boundary conditions [28]

φA(Lx) = φB(0) = 0, (3)

and put 0 ≤ x ≤ Lx henceforth.
Next we summarize the spinor solutions ψn(x, y) solv-

ing the stationary Dirac equation for eigenenergy En in
the absence of the kicking potential,

H0ψn(x, y) = Enψn(x, y), n = (nx, ny), (4)

where the integer nx serves as a band index and ny

parametrizes ky. The boundary conditions (3) imply that
the eigenvalues of equation (4) are obtained from the
transcendental equation [28]

ky − z

ky + z
= e−2Lxz, (5)

which admits two type of solutions, namely (i) confined
modes (standing waves), and (ii) surface states.

We start by discussing solutions of type (i), which are
purely imaginary, znx = ikx, and lead to the eigenenergies

En = ±vF

√
k2

x + k2
y, (6)

where the upper (lower) sign corresponds to the conduc-
tion (valence) band. Equation (5) now simplifies to:

ky =
kx

tan(kxLx)
, (7)

and solutions for kx (labeled by nx = 1, 2, . . .) correspond
to confined modes. The respective eigenstate (2), with
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Fig. 2. Band structure of unperturbed graphene nanoribbon.
The red dots indicate eigenenergies of confined modes, and the
blue dots correspond to surface states. The nanoribbon has
width Lx = 4.92 nm and length Ly = 12.3 nm, and a0 =
0.246 nm is the lattice unit.

the energy En in equation (6), has the transverse wave-
function

Φn(x) = Nn

(
sin(kxx)

± ivF

En
[−kx cos(kxx) + ky sin(kxx)]

)
, (8)

with normalization constant Nn.
Next we turn to surface state (type (ii)) solutions.

These correspond to purely real z = kx in equation (5),
where the eigenstate reads:

Φn(x) = N ′
n

(
2 sinh(kxx)

vF

En
[ky sinh(kxx) − kx cosh(kxx)]

)
. (9)

The eigenenergy is now given by:

En = ±vF

√
k2

y − k2
x, (10)

and N ′
n is another normalization constant. The surface

state energies equal zero for sufficiently large positive ky,
but they are absent for ky < 0. In Figure 2, the resulting
bandstructure of a typical graphene zigzag nanoribbon is
plotted.

2.2 Including the kicking potential

We are now ready to include the external driving po-
tential. We consider a periodic sequence of delta-kicks
of kicking strength ε and period T . (No confusion with
the symbol for temperature should arise here; we al-
ways consider the zero-temperature limit.) Writing H =
H0+V diag(1, 1), the additional term is given by the time-
periodic scalar potential,

V (x, t) = ε cos (2πx/λ)
∞∑

l=0

δ(t− lT ), (11)

where λ is the wavelength of the kicking pulse. Experimen-
tally, such delta-kicks could be realized by standing-wave

laser pulses [29–31], or by half-cycle laser pulses [32]. For
instance, the delta-kicked quantum rotor, representing a
well-known paradigm of quantum chaos theory, can be
experimentally realized in ultracold atoms that interact
with the periodic standing wave of a near-resonant laser
field [29]. Significant progress concerning the experimen-
tal realization of graphene interacting with ultrashort laser
pulses has also been reported recently [17–19]. Combining
the experimental methods in references [29–32] with those
in references [17–19] could allow to implement the delta-
kicked graphene nanoribbon discussed here in the lab.

The dynamics of a state Ψ = Ψ(x, y, t) is then governed
by the time-dependent 2D Dirac equation, i∂tΨ = HΨ .
To solve this equation, we expand Ψ(x, y, t) in terms of
the complete set of eigenfunctions of the unperturbed
graphene zigzag nanoribbon discussed in Section 2.1,

Ψ(x, y, t) =
∑

n

An(t)ψn(x, y), (12)

where n = (nx, ny) and the summation implicitly includes
the ± sign for the conduction and valence band, respec-
tively. To ensure normalization, the initial values (at time
t = 0) of the complex-valued expansion coefficients An(t)
in equation (12) satisfy the condition

∑
n

|An(0)|2 = 1. (13)

Within one time period, the amplitude An then follows
the time evolution

An(t+ T ) =
∑
n′
Vnn′e−iEn′TAn′(t) (14)

where En is the unperturbed eigenenergy of the respective
mode (see Sect. 2.1), and we define the matrix elements

Vnn′ =
∫ Lx

0

dx

∫ Ly

0

dy ψ†
n′(x, y)eiε cos(2πx/λ)ψn(x, y),

(15)
where nonzero matrix elements exist only for ny = n′

y
due to the translation invariance in y-direction. In calcu-
lating these matrix elements, we use a well-known Bessel
function expansion formula for the exponential term.

In numerical calculations, one may choose only a few
non-zero initial coefficients An(0) subject to equation (13).
In particular, we tested the impact of using different
choices for An(0), such as randomly chosen or equally dis-
tributed values. All choices were found to give qualita-
tively similar results for the time-evolved state Ψ(t) after
many kicks. For the calculations presented below, we chose
a random distribution for the coefficients An(0) contain-
ing ≈15 non-zero entries, where we take into account only
states with energy En below the Fermi level. The Fermi
level is here assumed at the neutrality point, i.e., EF = 0,
in order to maximally emphasize the Dirac fermion nature
of the graphene nanoribbon. Our procedure for choosing
the initial values for the An coefficients mimics the zero-
temperature average over the filled Fermi sea. We have
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Fig. 3. The upper panel shows the time evolution of the pop-
ulation transfer probability, Ẽn(t), for a few selected bare en-
ergy levels. The lower panel shows the same but on a magnified
scale near the first (anti-)crossing. The ribbon width Lx and
length Ly were chosen as in Figure 2. The kicking strength is
ε = 2.7 × 10−13 eVs, with period T = 0.1 fs and wavelength
λ = 2.46 nm.

carefully checked that different initial values lead to the
same physical results after a short initial transient.

Given the wave function, one can compute different
characteristics of the carrier dynamics and, in particular,
investigate charge transport in a kicked graphene nanorib-
bon. In Figure 3, the time evolution of the population
transfer probability Ẽn(t) ≡ |An(t)|2En (see Ref. [33]),
is shown for a few selected states. We observe several
crossings of the quantities Ẽn(t) within the conduction (or
within the valence) band. However, the Ẽn(t) originating
from different bands exhibit an anticrossing, closely ap-
proaching each other up to some time when they start to
separate again. After a certain number of kicks, one can
then again observe crossings or anticrossings, where intra-
and interband transitions become more frequent. Since ini-
tially the valence band is filled, this can lead to an increase
in the number of electrons in the conduction band, and
thereby to current flow. A related enhancement of intra-
and inter-band transitions has also been reported in ref-
erence [22] for graphene subject to ultrashort laser pulses.
When the Ẽn(t) separate from each other again after a

crossing or anticrossing, intra- and interband transitions
become less frequent, and one can expect a decrease in the
current. Such features indeed appear in the conductivity,
as we study next.

3 Optical conductivity

The interaction of external electromagnetic fields with
solids generally causes a modification of their electronic
properties and, in particular, of the bandstructure [22,34].
Using the solution of the time-dependent Dirac equation
for delta-kicking potential discussed in Section 2, one can
compute the related population transfer probabilities in
Figure 3. In this section, we focus on the optical conduc-
tivity of our system, which represents an important ob-
servable of experimental interest and can provide precious
insights about the transport mechanisms at play in kicked
graphene nanoribbons.

Within linear response theory, the Kubo formula
yields for the diagonal elements of the time-dependent
conductivity tensor (α = x, y) [35]

σαα(x, y; t, ω) =
e2

ω

∫ ∞

0

dτe−iωτ

× 〈[Jα(x, y, t), Jα(x, y, t− τ)]〉 , (16)

where [, ] denotes the commutator and the particle current
density along the α-direction is [1]

Jα(x, y, t) = vFΨ
†(x, y, t)σαΨ(x, y, t), (17)

with standard Pauli matrices σα=x,y acting in sublattice
space. The average in equation (16) is taken with respect
to the filled Fermi sea at the initial time t = 0, present be-
fore the kicking potential is switched on. In equation (16),
we focus on the long-wavelength limit by probing the two
current operators appearing in the Kubo formula at the
same point in space. In terms of the expansion coefficients
An(t) appearing in the expansion (12), equation (17) takes
the form

Jα(x, y, t) = vF

∑
nn′

A∗
n′(t)An(t)ψ†

n′(x, y)σαψn(x, y),

(18)
where A∗ denotes the complex conjugate of A. Insert-
ing equation (18) into equation (16), the conductivity at
time t follows as a lengthy (but straightforwardly ob-
tained) expression involving the time-dependent coeffi-
cients {An(t′)} for 0 < t′ < t. As described in Section 2.2,
the zero-temperature average over the filled Fermi sea is
implemented by choosing suitable initial values for those
coefficients. Below we discuss the time-dependence of the
conductivity averaged over the sample area and taken in
the ω → 0 limit,

σαα(t) = lim
ω→0

Re
∫ Ly

0

dy

Ly

∫ Lx

0

dx

Lx
σαα(x, y; t, ω). (19)

Notice that the respective conductivity (for ω → 0) in the
undriven case simply corresponds to the t = 0 limit in
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Fig. 4. Conductivity σxx(t) in units of e2/�, see equation (19),
as a function of time for a kicked graphene nanoribbon. Param-
eters are as in Figure 3 but with kicking time period T = 1 fs.
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Fig. 5. Same as Figure 4 but for several values of the kicking
strength ε, and showing only the initial time period (t < 150T ).

the figures shown below. Since we take the Fermi energy
at zero energy, this t = 0 value is generally orders of mag-
nitude smaller than the conductivity at long times in the
driven case.

Figure 4 shows numerical results for σxx(t) for repre-
sentative kicking potential parameters. We observe that
σxx(t) grows during some initial time interval, followed by
a suppression of the growth along with the development of
oscillatory behavior. These features can be linked to the
presence of crossings and anticrossings of the population
transfer probability as discussed above.

Next, Figure 5 presents σxx(t) for a fixed kicking pe-
riod, T = 1 fs, but now for different values of the kicking
strength ε. For the shown regime of rather short times,
the conductivity monotonically grows in time. Clearly, for
larger kicking strength, σxx(t) grows more rapidly, where
the slope of the growth is approximately proportional to ε.
However, as seen in Figure 4, after a longer time span, the
conductivity will be suppressed again. Nonetheless, the
variation of the kicking strength allows for a considerable
tunability of the conductivity.

The dependence of the conductivity on a variation of
the kicking period T (with fixed strength ε) is illustrated
by Figure 6. We find that σxx(t) monotonically grows
within the considered time interval, although at larger

Fig. 6. Same as Figure 5 but for different kicking periods T
and the fixed kicking strength ε = 2.7 × 10−13 eVs. The inset
shows the time dependence of the average kinetic energy on a
longer time scale for T = 1 fs.

Fig. 7. Time-dependence of the longitudinal conductivi-
ties σxx(t) and σyy(t) (in units of e2/�) along the x- and
y-direction, respectively, for the parameters in Figure 4.

times (not shown) the conductivity decreases and becomes
quasioscillatory again, as displayed before in Figure 4. The
inset of Figure 6 also shows the time-dependence of the
average kinetic energy,

〈E(t)〉 =
∫ Lx

0

dx

∫ Ly

0

dy Ψ∗(x, y, t)H0Ψ(x, y, t)

=
∑

n

|An(t)|2En. (20)

This quantity exhibits time-periodic behavior, again re-
flecting the periodic appearance of band crossings as il-
lustrated by Figure 3. Such a behavior is different from
a localization-induced saturation expected from quantum
chaos theory but also differs from the simple monotonic
growth expected on classical grounds [25–27].

Next, in Figure 7, we compare the different compo-
nents of the conductivity, namely σxx(t) and σyy(t). Al-
though the kicking force acts along x-direction, we find
very similar values for the conductivities in both direc-
tions. The spectral rearrangement caused by the kicking
force is thus quite efficient in also inducing current fluctu-
ations in the transverse (y) direction.

Finally, Figure 8 presents the spatio-temporal evo-
lution of the probability density, |Ψ(x, y, t)|2. Since



Page 6 of 7

Fig. 8. Probability density as a function of time and coordi-
nate for the parameters in Figure 4 (note that Lx = 20a0).

the result is homogeneous along the y-direction, we show
it as 2D color-scale plot in the (x, t) plane; note the sym-
metry under spatial reflection with respect to the ribbon
midpoint x = Lx/2. Figure 8 provides additional infor-
mation about the possibility of spatio-temporal quantum
localization of electrons in the kicked graphene nanorib-
bon. In fact, we conclude from Figure 8 that the carriers
are not fully localized inside the ribbon, although signa-
tures of localization near the midpoint are visible for finite
time spans. These time spans match up with the conduc-
tivity peaks in Figure 4, and suggest that for these param-
eters, the main transport channels are located away from
the midpoint. Note that a significant average velocity in-
crease is apparent in Figure 8 whenever the conductivity
increases.

4 Concluding remarks

In this paper, we have studied time-dependent parti-
cle transport in graphene zigzag nanoribbons driven by
an external time-periodic δ-kicking potential. The time-
dependent Dirac equation can be solved exactly within a
single kicking period, and numerical iteration of this so-
lution provides access to the wave function at arbitrary
time. Using this wave function, we have computed the
time-dependent optical conductivity (and other quanti-
ties). The conductivity is observed to initially grow as a
function of time up to certain time, after which the con-
ductivity decreases and ultimately shows quasioscillatory
behavior.

We find it rather remarkable that by judiciously choos-
ing the strength ε and the time period T of the kicking
field, one can achieve almost arbitrary results for the os-
cillation period and for the amplitude of the conductiv-
ity. In particular, it is possible to choose parameters such
that the initial increase extends for very long time. The
described behavior of σαα(t) can be linked to the existence

of (anti-)crossings in the population transfer probabilities
of the driven system.

The model studied in our work could be realized in
zigzag ribbons made of monolayer graphene samples that
are exposed to standing-wave ultrashort laser pulses, such
as those discussed in references [29–31]. The above results
also may help in solving the problem of tunable charge
transport in graphene-based electronic devices.

This work has been supported by the Volkswagen-Stiftung.
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