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Abstract. The aim of this essay is to investigate certain aspects of
the geometry of the spacetime manifold in the General Theory of
Relativity with particular reference to the occurrence of singularities in
cosmological solutions and their relation with other global properties.
Section 2 gives a brief outline of Riemannian geometry. In Section 3,
the General Theory of Relativity is presented in the form of two
postulates and two requirements which are common to it and to the
Special Theory of Relativity, and a third requirement, the Einstein
field equations, which distinguish it from the Special Theory. There
does not seem to be any alternative set of field equations which
would not have some undeseriable features. Some exact solutions are
described. In Section 4, the physical significance of curvature is inves-
tigated using the deviation equation for timelike and null curves. The
Riemann tensor is decomposed into the Ricci tensor which represents
the gravitational effect at a point of matter at that point and the
Welyl tensor which represents the effect at a point of gravitational
radiation and matter at other points. The two tensors are related
by the Bianchi identities which are presented in a form analogous to
the Maxwell equations. Some lemmas are given for the occurrence
of conjugate points on timelike and null geodesics and their relation
with the variation of timelike and null curves is established. Section 5
is concerned with properties of causal relations between points of
spacetime. It is shown that these could be used to determine physically
the manifold structure of spacetime if the strong causality assumption
held. The concepts of a null horizon and a partial Cauchy surface
are introduced and are used to prove a number of lemmas relating
to the existence of a timelike curve of maximum length between two
sets. In Section 6, the definition of a singularity of spacetime is given
in terms of geodesic incompleteness. The various energy assumptions
needed to prove the occurrence of singularities are discussed and
then a number of theorems are presented which prove the occurrence
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accompanying paper by George Ellis [Ellis 2014] for more background information concerning
the science history and content of this essay.
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of singularities in most cosmological solutions. A procedure is given
which could be used to describe and classify the singularites and their
expected nature is discussed. Sections 2 and 3 are reviews of standard
work. In Section 4, the deviation equation is standard but the matrix
method used to analyse it is the author’s own as is the decomposition
given of the Bianchi identities (this was also obtained independently by
Trümper). Variation of curves and conjugate points are standard in a
positive-definite metric but this seems to be the first full account for
timelike and null curves in a Lorentz metric. Except where otherwise
indicated in the text, Sections 5 and 6 are the work of the author who,
however, apologises if through ignorance or inadvertance he has fai-
led to make acknowledgements where due. Some of this work has been
described in [Hawking S.W. 1965b. Occurrence of singularities in open
universes. Phys. Rev. Lett. 15 : 689–690 ; Hawking S.W. and G.F.R.
Ellis. 1965c. Singularities in homogeneous world models. Phys. Rev.
Lett. 17 : 246–247 ; Hawking S.W. 1966a. Singularities in the universe.
Phys. Rev. Lett. 17 : 444–445 ; Hawking S.W. 1966c. The occurrence
of singularities in cosmology. Proc. Roy. Soc. Lond. A 294 : 511–521].
Undoubtedly, the most important results are the theorems in Section 6
on the occurrence of singularities. These seem to imply either that the
General Theory of Relativity breaks down or that there could be par-
ticles whose histories did not exist before (or after) a certain time. The
author’s own opinion is that the theory probably does break down, but
only when quantum gravitational effects become important. This would
not be expected to happen until the radius of curvature of spacetime
became about 10−14 cm.

1 Preface

By comparison with the study of positive-definite metrics, that of Lorentz metrics
has largely been neglected by pure mathematicians. The reasons for this seem to be,
first, that many of the techniques used for positive-definite metrics fail when applied
to Lorentz metrics, and second, that there is a feeling that such metrics are less
natural and of not such interest. However, there is a Lorentz metric of great interest
to physicists: namely, the metric of spacetime in the General Theory of Relativity.
Thus a considerable amount of work has been done on the local properties of this
metric. However, so far there has been little investigation of global properties.

This essay is intended as a small contribution to such an investigation. The princi-
pal tools employed are the variation of curves (developed in Sect. 4) and the concept
of a null horizon (introduced in Sect. 5). These could probably be used for a number
of global problems, but the one to which they are applied, namely singularities, seems
to be that with the greatest physical interest.

While I hope that this essay contains no major errors, I am not so optimistic as
to expect that there are no minor ones and I would ask the reader’s indulgence for
these. For various reasons, it was necessary to use a duplicating process and to put in
the equations on the stencils by hand. This may result in them being not very legible
in some places.

I am deeply indebted to Roger Penrose whose work introduced me to the problem
of singularities in spacetime. I would like to thank Brandon Carter, George Ellis, and
Denis Sciama, with whom I had many fruitful discussions, and Jill Powell, who did
the typing. Above all I am grateful to my wife, without whose encouragement and
help this essay would not have been written.

13 December 1966 Stephen Hawking
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2 An outline of Riemannian geometry

2.1 Manifolds

Essentially, a manifold is a generalisation of Euclidean space. Let R
n denote Euclidean

space of n dimensions, that is, the set of all n-tuples (u1, u2, . . . , un) with the usual
topology. A map φ of an open set O ⊂ R

n to an open set Ō ⊂ R
m is said to be

of class Cr if the coordinates (ū1, ū2, . . . , ūm) of φ(p) in Ō are r times continuously
differentiable functions of the coordinates (u1, u2, . . . , un) of p in O. A map φ from a
set P ⊂ R

n to a set P̄ ⊂ R
m is said to be Cr if φ is the restriction to P and P̄ of a

Cr map from an open set O containing P to an open set Ō containing P̄ .
Let R

n+ denote the region of R
n for which u1 ≥ 0. Then an n dimensional Cr

manifold (with boundary) is defined as a set M and an atlas (or differential structure)
{Uα, φα}, where Uα are subsets of M with ∪αUα = M and each φα is a bijection (one-
to-one correspondence) of the corresponding Uα to an open subset of R

n or of R
n+

such that, if Uα ∩ Uβ is nonempty, then

φα ◦ φ−1
β : φβ(Uα ∩ Uβ) −→ φα(Uα ∩ Uβ)

is a Cr map of an open subset of R
n to an open subset of R

n or of an open subset
of R

n+ to an open subset of R
n+. Another atlas is said to be compatible with the

given atlas if their union is a Cr atlas for M . The atlas consisting of all the atlases
compatible with the given atlas is called the complete atlas of the manifold. The
topology of the manifold is defined to be that given by the basis consisting of all the
subsets of the complete atlas. That is to say, it is the coarsest topology in which all
these subsets are open.

The boundary of M , denoted by ∂M , is defined to be the set of all points of M
whose image under a bijection φα lies on the boundary of R

n+ in R
n. Clearly, ∂M is

an (n− 1) dimensional Cr manifold whose boundary is empty.
Let M be a Cr manifold with atlas {Uα, φα} and N a Cs manifold with atlas

{Vα, ψα}. Then a map μ : M → N is said to be Ct(t ≤ r, s), if for every nonempty
μ(Uα) ∩ Vβ ,

ψβ ◦ μ ◦ φ−1
α : φα

(
Uα ∩ μ−1(Vβ)

) −→ ψβ
(
μ(Uα) ∩ Vβ

)

is a Ct map. In particular, a Ct map f : M → R
1 is called a Ct function on M . The

set of n functions u1(p), u2(p), . . . , un(p) on Uα defined as the coordinates of φα(p) in
R
n, are called local coordinates in Uα. It is not necessarily possible to find one set of

local coordinates which covers M , as the example of the two-sphere demonstrates.
A manifold is said to be orientable if there is an atlas {Vβ , ψβ} of the complete

atlas such that, in every nonempty Vα ∩Vβ , the Jacobian |∂ui/∂ūj| is positive, where
u1, u2, . . . , un and ū1, ū2, . . . , ūn are the local coordinates in Vα and Vβ , respectively.

An atlas {Vα, ψα} is said to be locally finite if every point p ∈ M has an open
neighbourhood which intersects only a finite number of the sets Vα. A manifold is said
to be paracompact if it satisfies the Hausdorff separation axiom and if for every atlas
{Uα, φα} there is a locally finite atlas {Vβ , ψβ} with each Vβ contained in some Uα.
A Hausdorff manifold with a countable basis is paracompact and any paracompact
manifold is normal [Hocking 1963, p. 78]. For a locally finite atlas {Vβ , ψβ} of a
paracompact manifold, one can find a partition of unity. This is a set of Cr functions
{fβ} such that [Kobayashi 1963, p. 273]:

1. 0 ≤ fβ ≤ 1.
2. The support of fβ , i.e., the closure of the set {p ∈M : fβ(p) 
= 0}, is contained in

the corresponding Vβ .



4 The European Physical Journal H

3.
∑

β fβ(p) = 1 for all p ∈M .

Unless otherwise stated, all manifolds considered will be paracompact, at least C4,
and without boundary.

2.2 Tensors

A Ck curve λ(t) in M is defined as a Ck map of a closed interval [a, b] of R
1 into M ,

that is to say, the restriction to [a, b] of a Ck map of an open interval containing [a, b].
The tangent vector to λ(t) at a point p = λ(t0) is defined as the map

(
∂

∂t

)

λ

∣
∣
∣∣
p

: F(p) −→ R
1,

where F(p) is the algebra of C1 functions defined in an open neighbourhood of p. In
other words, if f ∈ F(p), then (∂/∂t)λf is the derivative of f in the direction of λ(t).

Let u1, u2, . . . , un be local coordinates in a neighbourhood of p. Then

(
∂

∂t

)

λ

∣
∣
∣
∣
p

=
∑

j

duj
(
λ(t)

)

dt

∣
∣
∣
∣
∣∣
p

∂

∂uj

∣
∣
∣
∣
p

.

Thus every tangent vector at p can be expressed as a linear combination of the coor-
dinate derivatives

∂

∂u1

∣
∣
∣
∣
p

, . . . ,
∂

∂un

∣
∣
∣
∣
p

.

Conversely, given a linear combination

∑

j

vj
∂

∂uj

∣
∣
∣
∣
p

,

consider the curve defined by
uj = uj(p) + vjt,

for t in some interval [−ε, ε]. Then the tangent vector to this curve at p is

∑

j

vj
∂

∂uj

∣
∣
∣∣
p

.

Thus the tangent vectors at p form a vector space spanned by

∂

∂u1

∣
∣∣
∣
p

, . . . ,
∂

∂un

∣
∣∣
∣
p

.

To show that these are linearly independent, suppose

∑

j

vj
∂

∂uj

∣
∣
∣
∣
p

= 0.

Then applying this to uk, one obtains

0 =
∑

j

vj
∂uk

∂uj

∣
∣
∣
∣
p

= vk.
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The space of all tangent vectors at p will be denoted Tp(M) or simply Tp. Any vector
V ∈ Tp can be represented as

V =
∑

j

V j
∂

∂uj

∣
∣∣
∣
p

,

where V j = V uj are the components of V with respect to the coordinate basis
∂/∂u1

∣
∣
p
, . . . , ∂/∂un

∣
∣
p
.

A form (one-form, covariant vector) at p is defined to be a linear map of Tp to R
1.

In other words, it is an element of T ∗
p , the vector space dual to Tp. If E1, E2, . . . , En

are a basis for Tp, there is a dual basis E1, E2, . . . , En for T ∗
p such that Ej(Ei) = δij .

Then a form A ∈ T ∗
p can be expressed as

∑
j AjE

j , where Aj = A(Ej) are called the
components of the form in the basis dual to E1, . . . , En. For a function f ∈ F(p), the
form df defined by df(X) = Xf , for any X ∈ Tp, is called the differential of f at p.
Then du1, . . . ,dun form a basis of T ∗

p dual to the coordinate basis ∂/∂u1, . . . , ∂/∂un

of Tp.
If P and Q are vector spaces over R

1 with duals P ∗ and Q∗, the tensor product
P ⊗ Q is defined as the space of all bilinear maps of P ∗ × Q∗ to R

1. If p ∈ P
and q ∈ Q, p ⊗ q denotes that element of P ⊗ Q which maps (r, s) ∈ P ∗ × Q∗ to[
p(r)

][
q(s)

]
. If p1, . . . , pn and q1, . . . , qm are bases for P and Q, respectively, then

pi ⊗ qj (i = 1, . . . , n, j = 1, . . . ,m) will be a basis for P ⊗Q.
The tensor space T rs (p), of contravariant order r and covariant order s, at p is

defined to be the tensor product

Tp ⊗ . . .⊗ Tp︸ ︷︷ ︸
r times

⊗ T ∗
p ⊗ . . .⊗ T ∗

p︸ ︷︷ ︸
s times

,

whence T 1
0 (p) = Tp and T 0

1 (p) = T ∗
p . An element K of T rs (p) will be called a tensor

of type (r, s) at p. It will be a multilinear map of T ∗
p × . . . × T ∗

p × Tp × . . . × Tp to
R

1 and may be denoted as K(A1, . . . , Ar, X1, . . . , Xs), where A1, . . . , Ar ∈ T ∗
p and

X1, . . . , Xs ∈ Tp. In terms of the dual bases E1, . . . , En and E1, . . . , En of T ∗
p and Tp,

respectively, it can be expressed as

K =
∑

Ka...d
i...kEa ⊗ . . .⊗ Ed ⊗ Ei ⊗ . . .⊗ Ek,

where the numbers Ka...d
i...k are called the components ofK with respect to the bases.

Relations between tensors may be written either in terms of the tensors themselves
considered as multilinear maps or in terms of their components. We shall be flexible
in passing from one notation to the other.

The operation of contraction on a given contravariant and a given covariant posi-
tion is the linear map T rs (p) → T r−1

s−1 (p) given by

Ka...b...d
i...j...k �−→

∑

q

Ka...q...d
i...q...k,

or, using the dummy suffix notation, simply Ka...q...d
i...q...k.

The symmetrised (resp. antisymmetrised) part of a tensor on a given set of q
contravariant positions is defined to be the tensor whose components are 1/q! times
the sum (alternating sum) of components with all permutations of the indices. This
will be denoted by placing round (square) brackets around the indices. Thus,

K(ab) =
1
2!
(
Kab +Kba

)
, K [ab] =

1
2!
(
Kab −Kba

)
.
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Similarly, symmetrisation and antisymmetrisation may be defined on covariant posi-
tions. A tensor of type (0, q) which equals its antisymmetric part on all q positions is
called a q form. If A and B are p and q forms, respectively, we can define their wedge
product A ∧B = (−1)pqB ∧A by

(A ∧B)ab...def...h = A[ab...dBef...h].

With this product, the forms constitute a Grassmann algebra. The forms

dua ∧ dub ∧ . . . ∧ dud

are a basis for p forms:

A = Aab...d dua ∧ dub ∧ . . . ∧ dud.

A Ck tensor field K of type (r, s) on a set G is an assignment of an element of T rs (p) for
every p ∈ G such that the components of K with respect to a set of local coordinates
in an open neighbourhood of every point p are Ck functions of the coordinates.

2.3 Maps of manifolds

Let φ be a differentiable map of an n dimensional manifold M to an n̄ dimensional
manifold M . Then if f is a function on M , φ+f is defined to be the functional on
M whose value at a point p ∈ M is that of f at φ(p). Thus φ+ is a linear map of
functions on M to functions on M . Let λ(t) be a curve through p ∈M . Then φ

(
λ(t)

)

will be a curve in M through φ(p). The tangent vector to this curve at φ(p) will be
called φ+ ((∂/∂t)λ). Then φ+ is a linear map of Tp(M) to Tφ(p)(M). It is easy to see
that X(φ+f) = (φ+X)f , for all X ∈ Tp(M). Similarly, the linear map

φ+ : T ∗
φ(p)(M) −→ T ∗

p (M)

can be defined by (
φ+A

)
(X) = A(φ+X), A ∈ T ∗

φ(p)(M).

Thus the maps φ+ and φ+ can be regarded respectively as maps of covariant tensor
fields from M to M and contravariant tensor fields from M to M .

The map φ is said to be of rank r at p if the dimension of φ+

(
Tp(M)

)
is r. It is said

to be injective at p if r = n and surjective if r = n̄. it is said to be a diffeomorphism
if φ−1 : M →M is a differentiable map. It follows from the inverse function theorem
that, if n = n̄ and φ is injective at p, there is an open neighbourhood U of p such
that φ : U → φ(U) is a diffeomorphism.

The map φ is said to be an immersion if φ is injective at every point p ∈ M . An
immersion φ is said to be an imbedding if φ is a homeomorphism onto its image in
the induced topology. M , or φ(M), is then said to be an imbedded submanifold, or
simply a submanifold.

2.4 Differentiation

The exterior differential operator d acting on a function, i.e., a 0-form field, is defined
as in Section 2.2. It is defined acting on an r-form field A = Aab...ddua∧dub∧ . . .∧dud
by

dA = dAab...d ∧ dua ∧ dub ∧ . . . ∧ dud.
The following properties may easily be verified:
1. d maps r-form fields linearly to (r + 1)-form fields.
2. If A is an r-form, then d(A ∧B) = dA ∧B + (−1)rA ∧ dB.
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3. d2A = 0.
4. If φ : M →M is a C2 differentiable map and A is a form field on M , then

d
(
φ+A

)
= φ+(dA).

Let M be a compact, orientable, n dimensional manifold with boundary and let {fα}
be a partition of unity for a finite orientated atlas {Uα, φα}. Then if A is an n-form
field on M , the integral of A over M is defined as

∫

M

A =
∑

α

∫

φα(Uα)

fαA12...ndu1du2 . . .dun,

where A12...n are the components of A in the local coordinate neighbourhood Uα and
the integrals on the right are ordinary multiple integrals over open sets φα(Uα) of R

n.
It may be verified that

∫
M
A is independent of the atlas chosen and that if φ : M →M

is a differentiable map, then
∫

ψ−1(M)

ψ+A =
∫

M

A.

If B is an (n− 1)-form field on M , the generalised Stokes equation can be expressed
as ∫

∂M

B =
∫

M

dB.

This may be verified from the definition of the integral given above.

2.4.1 Lie derivative

Let X be a C1 vector field on M . Then by the fundamental theorem of differential
equations, through each point of M there is a unique curve (called the integral curve
of X) whose tangent vector is X . For every p ∈M , there is an open neighbourhood U
and an ε > 0 such that there is a family of differentiable maps φt : U → M (|t| < ε)
which are diffeomorphisms, U → φt(U) and which are defined by taking each point
of U a parameter distance t along the integral curves of X . If K is a tensor field of
type (r, s) on U , the isomorphism (φ−1

t )+ : Tφ−1
t (p) → Tp induces an isomorphism

φ̄t : T rs
(
φ−1
t (p)

)→ T rs (p).
The field φ̄t(K) is said to be ‘dragged along’ by the diffeomorphism φt. Then the

Lie derivative of K with respect to X is defined to be the derivative with respect to
t of this dragged along field, that is

LXK
∣
∣
p

= lim
t→0

1
t

[
K
∣
∣
p
− φ̄t(K)

∣
∣
p

]
.

By its definition, LXK will also be a tensor field of type (r, s). In terms of components
with respect to a coordinate basis:

(LXK)ab...def...h =
∂Kab...d

ef...h

∂ui
X i −Kib...d

ef...h
∂Xa

∂ui
− . . .+Kab...d

if...h
∂X i

∂ue
+ . . .

In particular, LXf = Xf , where f is a function. If Y is a vector field, LXY is
sometimes written as [Y,X ] = −[X,Y ].
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2.4.2 Covariant derivative

A connection at a point p ∈M is a rule which assigns to each C1 vector field Y in a
neighbourhood of p a tensor ∇Y of type (1, 1) at p called the covariant derivative of
Y , such that:

1. ∇Y is linear in Y .
2. ∇(fY ) = df ⊗ Y + f∇Y .

A tensor of type (1, 1) is a bilinear map T ∗
p × Tp → R

1. It can also be regarded as a
linear map Tp → Tp. Thus if X ∈ Tp, we denote the action of ∇Y on X by ∇XY , the
covariant derivative of Y in the direction of X .

A Ck connection on M is a rule which assigns a connection at each point on M
such that if Y is a Ck+1 vector field on M , then ∇Y is a Ck tensor field. In terms of
local coordinates u1, . . . , un on a neighbourhood U , the connection is determined by
n3 Ck functions on U such that

∇ ∂

∂uj
= Γ kij

∂

∂uk
⊗ dui.

Then by rules (1) and (2) above,

∇Y = Y i;j
∂

∂ui
⊗ duj ,

where Y i;j are the coordinate components of the covariant derivative of Y and are
given by

Y i;j =
∂Y i

∂uj
+ Γ ijkY

k.

The definition of covariant derivative can be extended to any C1 tensor field by the
rules:

1. If K is a tensor field of type (r, s), then ∇K is a tensor field of type (r, s+ 1).
2. ∇(K ⊗ L) = ∇K ⊗ L+K ⊗∇L.
3. ∇ commutes with contraction.
4. ∇f = df , where f is a function.

These give that the components of ∇K are

Kab...d
ef...h;i =

∂Kab...d
ef...h

∂ui
+ Γ aijK

jb...d
ef...h + . . .− Γ jieK

ab...d
jf...h − . . .

If K is a C1 tensor field along a curve λ(t), we may define DK/∂t, the covariant
derivative of K along λ(t), as ∇∂/∂tK, where K is any C1 tensor field extending K
in an open neighbourhood of λ. It is not difficult to see that DK/∂t is independent
of the extension K. K is said to be parallelly transported along λ if DK/∂t = 0.

If ∇Y and ∇̂Y are covariant derivatives obtained from two different connections,
then

∇Y − ∇̂Y =
(
Γ ijk − Γ̂ ijk

)
Y k

∂

∂ui
⊗ duj

will be a tensor. Thus Γ ijk−Γ̂ ijk will be the components of a tensor. Similarly, Γ ijk−Γ ikj
will be the components of a tensor called the torsion tensor of the connection. We
shall deal only with connections that are torsion free (symmetric).

The exterior and Lie derivatives may be expressed in terms of the covariant deriva-
tive. Thus,

dA = Aab...d;edua ∧ dub ∧ . . . ∧ dud ∧ due
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and
[X,Y ] =

(
Xa

;bY
b − Y a;bX

b
) ∂

∂ua
.

However, by their construction, they are independent of the connection.
The curvature (or Riemann) tensor of a connection is a measure of the extent to

which the scond covariant derivative ∇∂/∂ui(∇∂/∂ujZ) is not symmetric in i and j.
Given C2 vector fields X , Y , and Z, define a new vector field by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ + ∇[X,Y ]Z.

It is easy to verify that the value of R(X,Y )Z at a point p ∈ M depends only on
the values of X , Y , and Z at p, and not on their values at nearby points, and that
R(X,Y )Z is trilinear in X , Y , and Z. In other words, R is a tensor. In component
form, one has

za;bc − za;cb = RadcbZ
d,

where
Rabcd = dua

(
R(∂/∂uc, ∂/∂ud, ∂/∂ub)

)

are the coordinate components of the Riemann tensor and are related to the Γ abc by

Rabcd =
∂Γ adb
∂uc

− ∂Γ acb
∂ud

+ Γ edbΓ
a
ce − Γ ecbΓ

a
de.

As Γ a[bc] = 0, the Riemann tensor has the symmetry Ra[bcd] = 0 and satisfies the
Bianchi identity Rab[cd;e] = 0.

The Ricci tensor is defined to be the contraction of the Riemann tensor

R(X,Y ) = dua
(
R(∂/∂ua, X)Y

)
.

In components, Rbd = Rabad.

2.5 The metric

A metric at p ∈ M is a scalar product on Tp. Thus it can be represented by a
symmetric tensor g of type (0,2) with coordinate components gab = g(∂/∂ua, ∂/∂ub).
Then

g = gabdua ⊗ dub.

In fact, the tensor product sign is normally omitted and g is denoted by ds2. The
metric is said to be nondegenerate if there is no nonzeroX ∈ Tp such that g(X,Y ) = 0
for all Y ∈ Tp. In terms of components, the metric is nondegenerate if and only if
the matrix (gab) of the components is nonsingular. By a metric, we shall in future
always mean a nondegenerate metric. For such a metric, one can define a symmetric
contravariant metric tensor with components gab, such that

gabgbc = δac .

These tensors can be used to give an isomorphism between covariant and contravari-
ant tensors (in other words, to raise and lower indices). For example, if Xa are the
components of a contravariant vector, then Xa will be the components of a covariant
vector, where

Xa = gabX
b, Xa = gabXb.

A Ck metric on M is a Ck tensor field g. The signature of g at p is the number of
positive eigenvalues of the matrix (gab) minus the number of negative ones. As g is
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nondegenerate, the signature will be constant on M . A metric whose signature is n is
called a positive definite metric and one whose signature is 2 − n is called a Lorentz
metric. Any paracompact Cr manifold admits a Cr−1 positive-definite metric. This
may be shown as follows. Let {fα} be a partition of unity for a locally finite atlas
{Uα, φα}. Then we may define g(X,Y ) by

g(X,Y ) =
∑

fα
〈
(φα)+X, (φα)+Y

〉
,

where 〈 , 〉 is the natural scalar product in Euclidean space R
n.

However, a Cr paracompact manifold admits a Cr−1 Lorentz metric if and only if
it admits a Cr−1 line-element field (X,−X) (by this is meant a non-vanishing Cr−1

vector field X which is determined up to a sign). This may be seen as follows. Let g
be a Cr−1 positive-definite metric. Then we may define a Lorentz metric g by

g(Y, Z) = −g(Y, Z) + 2 [g(X,X)]−1
g(X,Y )g(X,Z).

Conversely, if g is a Lorentz metric, consider the equation gabXb = λgabX
b. This will

have one positive and n − 1 negative eigenvalues λ. Thus the eigenvector X corre-
sponding to the positive eigenvalue will be determined up to a sign and a normalising
factor. It may be normalised by XaXbgab = 1. In fact, any noncompact manifold
admits a line-element field, while a compact manifold does if and only if its Euler
invariant is zero.

Given a metric g, there is a unique symmetric, i.e., torsion-free, connection for
which the covariant derivative of g is zero. It is easy to verify that the components of
this connection are

Γ abc =
1
2
gad

(
∂gdb
∂uc

+
∂gdc
∂ub

− ∂gbc
∂ud

)
.

Henceforth, we shall deal only with the connection defined by the metric. The Riemann
tensor then satisfies the additional identity R(ab)cd = 0 (where one index has been
lowered by gab), as well as the identities Rab(cd) = 0 (from the definition of Rabcd)
and Ra[bcd] = 0 (from the fact that Γ a[bc] = 0). These identities imply that there are

1
12
n2(n+ 1)(n− 1)

algebraically independent components Rabcd. When n > 2, n(n + 1)/2 of them can
be represented by the components Rab of the Ricci tensor (since R[ab] = 0). When
n > 3, the remaining

1
12
n(n+ 1)(n+ 2)(n− 3)

components can be represented by the components Cabcd of the Weyl or conformal
tensor defined by

Rabcd = Cabcd − 2
n− 2

(
ga[dRc]b + gb[cRd]a

)
− 2

(n− 2)(n− 1)
Rga[cgd]b,

where R = gabRab is the curvature scalar. The Weyl tensor satisfies the identities

Cabcd = C[ab][cd], Ca[bcd] = 0, Cabad = 0.

Two metrics g̃ and g are said to be conformal if g̃ = Ω2g for some suitably defined
nonzero differentiable function Ω. Then the connections they define are related by

Γ̃ abc = Γ abc +Ω−1

(
δab
∂Ω

∂uc
+ δac

∂Ω

∂ub
− gbcg

ad ∂Ω

∂ud

)
,
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and their Weyl tensors by
C̃abcd = Cabcd.

Thus the Weyl tensor is a conformal invariant.
A curve λ(t) is said to be a geodesic curve if

D
∂t

(
∂

∂t

)

λ

is parallel to
(
∂

∂t

)

λ

.

For such a curve, one can find an affine parameter v such that

D
∂v

(
∂

∂v

)

λ

= 0.

The curve λ with the parameter v is called a geodesic. The affine parameter of a
geodesic curve is determined up to a constant multiplying and a constant additive
factor. If the connection is C1, then given any X ∈ Tp, there is a unique geodesic λ(v)
with λ(0) = p and (

∂

∂v

)

λ

∣∣
∣
∣
p

= X.

These geodesics give a differentiable map exp : Tp →M which takes X ∈ Tp to λ(1).
This map will be defined for some open neighbourhood of the origin of Tp. M is said
to be geodesically complete if it is defined on Tp for all p ∈ M . As the exponential
map is injective at M , there will be an open neighbourhood V of p such that it is a
diffeomorphism: exp−1(V ) → V . Let E1, E2, . . . , En be an orthonormal basis for Tp,
i.e., g(Ei, Ej) = ±δij . Then we may define local coordinates u1, u

2, . . . , un on V by
setting ui(q) equal to the components with respect to E1, E2, . . . , En of exp−1(q). At
p, we then have ∂/∂ui = Ei and Γ ijk = 0. The neighbourhood V may be chosen so
that it is convex, that is, any two points of it may be joined by a unique geodesic in
V [Kobayashi 1963, p. 149]. The neighbourhood V will be called a normal coordinate
neighbourhood.

The Kronecker tensor of order p (p ≤ n) has components

δab...def...h = p! δa[eδ
b
f . . . δ

d
h]

and has zero covariant derivative. The components δ12...nef...h of the Kronecker tensor of
order n have the correct antisymmetry to be components of an n-form. However, if
ū1, ū2, . . . , ūn are another set of local coordinates, then

δ̄12...nef...h =
∣
∣∣
∣
∂ūi

∂ud

∣
∣∣
∣
∂ur

∂ūe
∂us

∂ūf
. . .

∂uv

∂ūh
δ12...nrs...v .

This is not the correct transformation law for the components of an n-form since it
includes the Jacobian |∂ūi/∂ud|. However,

ηef...h =
√
gδ12...nef...h, f = det |gab|

will be the components of an n-form called the canonical form, which has zero co-
variant derivative. using this one may define the Hodge star operation which maps
p-forms linearly to (n− p)-forms:

(∗A)ab...d = p!ηab...def...hAij...lgeigfj . . . ghl.

Then
∗∗A = (−1)(n−p)p+s−nA,
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where 2s is the signature of the metric. This operation enables one to integrate p-forms
over n− p submanifolds. One may also define the operator δ by

δ = (−1)(n−p)p+s−p ∗d∗.

This may be regarded as a generalisation of the divergence operator. For a one-form,

δA = Aa;bg
ab,

and Green’s formula may be expressed as

(−1)(n−p)p+s−n
∫

M

∗δA =
∫

M

d∗A =
∫

∂M

∗A.

3 General relativity

3.1 Special relativity

The special theory of relativity was proposed by Einstein in 1905. Since then its pre-
dictions have been extensively tested and found to agree well with experiment, pro-
vided that gravitational effects are neglected. In order to include gravitation, Einstein
formulated the general theory of relativity in 1916. This theory includes all the experi-
mentally tested features of special relativity and also predicts results for gravitational
fields very similar to those of the well tried Newtonian theory.

We shall present the general theory in the form of two postulates which describe
the mathematical model to be used, but which do not have any physical content until
they are supplemented by three requirements which relate the mathematical structure
to physically observable quantities. The two postulates and the first two requirements
are statements of the special theory of relativity and as such are well tested. The
third requirement which distinguishes the general from the special theory is not so
well established experimentally. Nevertheless, we shall see that it would be difficult to
think of any alternative requirement which did not have some undesirable features.

Postulate (a). Space and time are represented together as a four-dimensional,
connected, paracompact manifold M of class at least C4.

A manifold corresponds naturally to our intuitive ideas about the continuity of space
and time. However, it is of interest to note that theories have been proposed in
which spacetime has a discrete structure [e.g., Hill 1955, Coxeter 1950]. Neverthe-
less, even in these theories a manifold is a good approximation for regions larger than
about 10−14 cm.

On the question of what class of differentiability we should assume for the space-
time manifold M , we shall adopt the view later that the differential structure can
only be physically determined by use of the metric. Thus unless we assumed a C∞
metric, and there does not seem to be any physical reason for doing so, we could not
physically determine which C∞ atlas was the C∞ atlas. Lichnerowicz [Lichnerowicz
1955] has suggested that one might assume that M was only of class C2 with a C2,
piecewise C4 differential structure. This is defined as follows: an atlas {Vα, ψα} of
the complete C2 atlas of M will be said to be piecewise C4 if, for every non-empty
Vα ∩ Vβ ,

ψαψ
−1
β : φβ(Vα ∩ Vβ) −→ φα(Vα ∩ Vβ)

is a piecewise C4 map. The set of all piecewise C4 atlases compatible with the given
atlas constitutes the complete C2, piecewise C4 atlas of M . A function on M is said
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to be C2 piecewise C4 if it is a C2, piecewise C4 function of the local coordinates of
a piecewise C4 atlas. Similarly, a tensor field on M is said to be C1 piecewise C3 if
its components with respect to the local coordinates of some piecewise C4 atlas are
C1, piecewise C3 functions of the coordinates.

The assumption of this piecewise C4 structure is mathematically convenient for
the construction of certain exact solutions since it allows certain discontinuities in the
curvature, etc. All such solutions, however, can be arbitrarily closely approximated
by C4 and even C∞ solutions which would probably be more physically realistic
anyway. All the results that will be obtained in this paper could be proved on the
assumption of a piecewise C4 structure instead of a C4 structure. However, to perform
all the calculations on this basis would be very tedious and would not really produce
anything new. We will therefore assume a C4 structure for M .

Postulate (b). On M , there is a C3 (Lichnerowicz: C1, piecewise C3) Lorentz
metric g(X,Y ) of signature −2 and components

gab = g
(
∂/∂ua, ∂/∂ub

)
.

We saw in Section 2 that the existence of such a metric implied that, if M was
compact, its Euler invariant must be zero. However, it will be shown in Section 5 that
there is good reason to suppose that M is not compact.

The metric enables the non-zero vectors at a point p ∈M to be divided into three
classes: a non-zero vector X ∈ Tp is said to be timelike, null, or spacelike, according to
whether g(X,X) is greater than, equal to, or less than zero, respectively. The physical
significance of the metric comes from the following requirements which relate it to
physically observable quantities.

Requirement 1. Local causality. Let U be a normal coordinate neighbour-
hood of a point p. Then events at another point q ∈ U cannot be causally
related to events at p by effects confined to U unless q can be reached from
p by a C1 curve whose tangent vector is everywhere timelike or null (we shall
call such a curve non-spacelike). That is to say, it is impossible to send a signal
which does not cross the boundary of U from one point to the other if they
cannot be joined by a non-spacelike curve.

Taking u1, u2, u3, and u4 to be normal coordinates in U about p with ∂/∂u4 timelike,
(g11 = g22 = g33 = −g44 = −1, other gab zero at p), it is easy to see that the points
that may be causally related to p in U are those whose coordinates satisfy

(
u4
)2 − (u3

)2 − (u2
)2 − (u1

)2 ≥ 0.

The boundary of these points in U is formed by the points whose coordinates satisfy
the equality above. This surface, called the null cone of p, is generated by the null
geodesics through p, that is, geodesics with null tangent vectors. Thus observation of
causal relationships on M enables us to determine Np, the space of null vectors at p.
But once Np is known, the metric at p may be determined up to a conformal factor.
This may be shown as follows. Let X ∈ Tp be a timelike vector and Y ∈ Tp a spacelike
vector. Consider the equation

g(X + λY,X + λY ) = g(X,X) + 2λg(X,Y ) + λ2g(Y, Y ) = 0.

Since g(X,X) > 0 and g(Y, Y ) < 0, this will have real roots λ1 and λ2. If Np is
known, λ1 and λ2 may be determined. But

λ1λ2 =
g(X,X)
g(Y, Y )

,
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and thus the ratio of the magnitudes of a timelike and a spacelike vector may be
found. Then if W and Z are any two vectors at p,

g(W,Z) =
1
2

[g(W + Z,W + Z) − g(W,W ) − g(Z,Z)] .

Each of the magnitudes on the right may be compared with the magnitudes of either
X or Y , and so g(W,Z)/g(X,X) may be found. Thus observation of the causal struc-
ture of M allows us to measure the metric up to a conformal factor. In practice, this
measurement is most conveniently carried out using the fact that light travels approx-
imately on null geodesics. This, however, is a consequence of the particular equations
the electromagnetic theory obeys, not of the theory of relativity itself. Causality will
be considered further in Section 5, where it will be shown that, with certain assump-
tions, it may be used to define the topological and differential structure of M .

Requirement 2. Covariance. The equations which govern the behaviour of
the physical fields on M should all be expressible as relations between tensors
on M with all derivatives with respect to position being covariant derivatives
with the symmetric connection defined by the metric. In particular, if T ab are
the components of the total energy-momentum tensor of all the physical fields
(except the gravitational fields), the equations of local conservation of energy
and momentum are expressed as

T ab;b = 0.

If the metric is flat, we may introduce in some region U coordinates u1, u2, u3, u4 for
which the only non-zero components of the metric are

g11 = g22 = g33 = −g44 = −1,

and all the components Γ abc of the connection are zero. It is then easy to see that the
metric has zero Lie derivative with respect to the following vector fields:

L
α

=
∂

∂uα
, α = 1, 2, 3, 4,

M
γδ

= uγ
∂

∂uδ
− uδ

∂

∂uγ
, M

γ4
= −M

4γ
= −uγ ∂

∂u4
− u4 ∂

∂uγ
, γ, δ = 1, 2, 3.

That is, the ten vector fields L
α

and M
γδ

are Killing vectors. They generate a ten

parameter Lie group of isometries known as the inhomogeneous Lorentz group. We
may use the L

α
to define one-forms P

α
whose components are

P
α
a = gabgcdT

bcL
α

d.

We may think of P
4

as representing the flow of energy and P
1
, P

2
, and P

3
the flow of

the three components of momentum. We have

δP
α

= P
α
a;eg

ae = T bc;bL
α
c + T bcL

α
c;b.

The first term is zero by the conservation equations and the second term vanishes
because L

α
(c;b) is zero as L

α
is a Killing vector. Thus if D is some compact region

contained in U with boundary ∂D, we have
∫ ∗

∂D

P
α

=
∫

D

∗δP
α

= 0.
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This means that the total flux of energy and each component of momentum over a
closed surface is zero. This is the integral form of the law of conservation of energy
and momentum. Similar integrals may be defined using the Killing vectors M

γδ
. They

represent the conservation of angular momentum.
If the metric is not flat, there will not in general be any Killing vectors and so

the above integral conservation laws will not hold. However, in a neighbourhood U
of a point p, we may introduce normal coordinates u1, u2, u3, and u4 in which, at
p, the non-zero components of the metric are g11 = g22 = g33 = −g44 = −1 and the
components Γ abc of the connection are zero. We may take a neighbourhood D of p in
which they differ from their values at p by an arbitrarily small amount. Then L

α
(a;b)

and M
γδ

(a;b) will not exactly vanish in D, but will differ from zero by an arbitrarily

small amount. Thus
∫
∂D

∗P
α

will still be zero in the first approximation. That is to say,
we still have approximate conservation of energy-momentum in a small region. This
local conservation enables us to prove that a small isolated body moves approximately
on a geodesic in M .

We think of the body as being represented by a thin timelike tube C in M , outside
which Tab is zero. We take a timelike curve γ(s), parametrised by path length s, in C
as representing the motion of the body. We proceed as follows. The Fermi derivative of
a vector fieldX along a timeline curve γ(s) with unit tangent vector V , so g(V, V ) = 1,
is defined by

DFX

∂s
=

DX
∂s

+ V g

(
X,

DV
∂s

)
− DV

∂s
g(X,V ).

A vector field X is said to be Fermi propagated along γ(s) if

DFX

∂s
= 0.

The product g(X,V ) will be constant along γ(s). Let E1, E2, E3, E4 be an orthonor-
mal basis of vectors at some point p = γ(0) with E4 = V . They may be Fermi
propagated along γ(s) to give an orthonormal basis at all points of γ(s). Let Hq be
the subspace of Tq, the tangent space at q = γ(s), which is spanned by the vectors E1,
E2, E3. Then in a neighbourhood of q, expq(Hq) will be a three-surface orthogonal
to γ(s). We define the Fermi coordinates u1, u2, u3, u4 of a point r in expq(Hq) by

ui = −g(Ei, exp−1
q (r)

)
, i = 1, 2, 3, u4 = s.

It is easy to show that, in these coordinates, the only non-zero components of the
connection are

Γ 4
a4 = V̇a, Γ a44 = V̇ a,

where V̇ = DV/∂s is the acceleration of the curve γ(s). If we define the vectors
L
α

= ∂/∂uα as before, then L
α

a
;b = Γ aαb. We put P

α
a = TabL

α

b and take the region D to

be that bounded by the two surfaces Σ(u4 = s) and Σ′(u4 = s′) and a tube C′ lying
outside C. Then, ∫

Σ′

∗P
α
−
∫

Σ

∗P
α

=
∫

D

∗ (TabΓ aαcg
bc
)
.

Taking Σ′ very close to Σ, we get

d
ds

∫

Σ(s)

∗P
α

=
∫

Σ(s)

∗ (TabΓ aαcg
bcdu4

)
.
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Multiplying P
α

by ui, i = 1, 2, 3, we get

d
ds

∫

Σ(s)

∗ (
P
α
ui
)

=
∫

Σ(s)

∗ [(
TabL

α

agib + TabΓ
a
αcg

bcui
)

du4
]
.

We may regard integrals of the form
∫
Σ

∗(P
α
ui
)

as representing dipole and higher
moments of the matter distribution. As we make the body arbitrarily small, we shall
assume that these may be neglected in comparison with the first order moments. We
may also approximate the components of the connection by their values on γ(s). We
then get

∫

Σ

∗ (
TabL

α

agibdu4
)

= 0, V̇ = 0,
∫

Σ

∗(P
α
) = 0, α = 1, 2, 3,

∫

Σ

∗P
4

= const.

Thus a sufficiently small isolated body moves on a geodesic independent of its internal
constitution. This may be thought of as corresponding to Galileo’s principle that all
bodies fall at the same rate. In Newtonian terms, one would say that the inertial mass
(the m that appears in F = ma) and the passive gravitational mass (the mass acted
on by a gravitational field) are equal for small bodies.

Requirement (1) enabled us to measure the metric physically up to a conformal
factor. Requirement (2) enables us to determine this factor. For it demands that the
rate at which physical processes occur in a small isolated system should depend only
on the metric and the past history of the system. However, there are found to be
systems (such as electronic states of atoms) whose rates are independent of their past
history. The fact that there are large numbers of similar such systems enables us to
compare the conformal factors at different points and so completely determine the
metric in terms of some physical standard of time.

Before proceeding to the third requirement, which distinguishes the general from
the special theory of relativity, we shall consider in the next section how the equations
and the energy-momentum tensor of the physical fields may be derived.

3.2 Lagrangian formulation

It may be possible to obtain the equations of the physical fields from a Lagrangian L
which is a function of the fields ψA, ψB, and so on (which may be scalar functions,
tensors, or spinors), their covariant derivatives, and the metric. One requires that the
action integral

I =
∫

D

∗L

be stationary under small variations of the fields ψA, ψB, . . .
This may be stated more precisely as follows. We regard the fields as cross-sections

of some tensor bundles PA, PB, . . . over M . Then we may define a variation of ψA as
a C2 map

α : (−ε, ε) ×M −→ PA,

for some ε > 0 such that

1. α(0, q) = ψA(q), q ∈M,
2. α(u, r) = ψA(r), r ∈M\D, u ∈ (−ε, ε).
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We shall denote by ΔψA the variation vector

ΔψA = π

((
∂

∂u

)
α

∣
∣
∣∣
u=0

)
.

Under this variation α, the derivative of the action will be

∂I

∂u

∣∣
∣
∣
u=0

=
∫

D

[
∂∗L
∂ψA

ΔψA +
∂∗L
∂ψA;a

Δ(ψA;a)
]
,

where ψA;a are the components of the covariant derivative of ψA. But

Δ
(
ψA;a

)
=
(
ΔψA

)
;a
.

Thus the second term may be expressed as

∫

D

[(
∂∗L
∂ψA;a

ΔψA
)

;a

−
(

∂∗L
∂ψA;a

)

;a

ΔψA
]

.

The first term above can be transformed into an integral over the boundary of D
which vanishes as ΔψA is zero there. Thus, in order that ∂I/∂u should be zero for all
variations α, we require

∂∗L
∂ψA

−
(

∂∗L
∂ψA;a

)

;a

= 0 .

These are the equations of the fields. They automatically satisfy requirement (2).
We may define the energy-momentum tensor from the Lagrangian by considering

the change in the action induced by a small change in the metric. Suppose we have
a variation α which leaves the fields ψA, ψB, . . . , unchanged but which alters the
components gab of the metric, then

∂I

∂u

∣
∣
∣∣
u=0

=
∫

D

[
∑

A

∂∗L
∂ψA;a

Δ(ψA;a) +
∂∗L
∂gab

Δgab
]

.

In this case, Δ(ψA;a) will not necessarily be zero even though ΔψA is, because the
variation in the metric will induce a variation in Γ abc , the components of the connec-
tion. Since the difference between two connections transforms as a tensor, ΔΓ abc may
be regarded as the components of a tensor. They are related to the variation in the
components of the metric by

ΔΓ abc =
1
2
gad [(Δgdb);c + (Δgdc);b − (Δgbc);d] .

Using this relation, Δ(ψA;a) may be expressed in terms of (Δgbc);d , and the usual
integration by parts employed to give an integrand involving Δgab only. Thus we may
write ∂I/∂u as ∫

∗ (T abΔgab
)
,

where T ab are the components of a symmetric tensor which we call the energy-
momentum tensor of the fields. This satisfies the conservation equations as a conse-
quence of the equations of the fields ψA, ψB, . . . For suppose we had a diffeomorphism
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φ : M → M which was the identity everywhere except in the interior of D. Then by
the invariance of integrals under differential maps,

I =
∫

D

∗L =
∫

φ−1(D)

φ+(∗L) =
∫

D

φ+(∗L).

Thus ∫

D

[∗L− φ+(∗L)
]

= 0.

If the diffeomorphism φ is generated by a vector field X (non-zero only in the interior
of D), it follows that ∫

D

LX(∗L) = 0.

But

∫

D

LX(∗L) =
∫

D

{
∑

A

[
∂∗L
∂ψA

−
(

∂∗L
∂ψA;a

)

;a

]

LXψA + ∗ (T abLXgab
)
}

.

The first term vanishes as a consequence of the equations of the fields. In the second
term,

LXgab = 2X(a;b).

Thus

0 =
∫

D

∗ (T abXa;b

)
=
∫

D

∗
[(
T abXa

)
;b
− T ab;bXa

]
.

The first term may be transformed into an integral over the boundary of D which
vanishes as X is zero there. Since the second term must be zero for arbitrary X , it
follows that

T ab;b = 0.

We shall give two examples which illustrate methods by which the equations of the
fields and the energy-momentum tensor can be derived from a Lagrangian. First,
the electromagnetic field (without sources). This is described by a covariant vector A
called the potential. The electromagnetic field tensor F is defined as dA. In component
form, one has Fab = A[a;b]. The Lagrangian is taken to be

−1
2
FabF

ab.

Then requiring the action to be stationary, we have

F ab;b = 0.

Since the field tensor F is the exterior derivative of A, it follows that dF = 0. In
component form this is F[ab;c] = 0. This and the above equation are known as the
Maxwell equations for the source-free field. Varying the metric, we have

∂I

∂u

∣
∣∣
∣
u=0

= −
∫

D

(
ηFabFcdg

bdΔgac +
1
2

ΔηFabFcdgacgbd
)
,

where
ηabcd =

√−gδ1234abcd



Stephen Hawking: Singularities and the geometry of spacetime 19

is the canonical 4-form. So

Δηabcd = −1
2
gefΔgefηabcd.

But
Δgef = −geagfbΔgab.

Thus
T ab = F acF bc − 1

4
gabF cdFcd.

One may note the following interesting properties of this energy-momentum tensor:
it has zero contraction, i.e., T aa = 0, and if W is any timelike vector, then

TabW
aW b > 0.

This may be interpreted as meaning that the energy density is positive to any observer.
The significance of this will become apparent in Section 6.

The second example of a Lagrangian will be that for an isentropic perfect fluid.
The technique here is rather different. We shall consider the fluid in a region D of M
to be described by a function ρ called the density and a congruence of timelike curves
which are called flow lines. By a congruence of curves we mean a diffeomorphism

γ : [a, b] ×N −→ D,

where [a, b] is some closed interval of R and N is some three-dimensional manifold.
The curves are said to be timelike if their tangent vector

W =
(
∂

∂t

)

γ

, t ∈ [a, b],

is timelike everywhere. We will define the tangent vector V as g(W,W )−1/2W and
the fluid current vector J as ρV . This is required to be conserved, that is, Ja;a = 0.
We also introduce the elastic potential π, which is some function of the density ρ.
This may be thought of as the potential energy per unit density ρ or as the specific
enthalpy. The Lagrangian L is taken to be 2ρ(1 + π) and the action I is required to
be stationary under variation of the flow lines. A variation α of the flow lines is a
differentiable map

α : (−ε, ε) × [a, b] ×N −→ D,

such that
α
(
0, [a, b], N

)
= γ

(
[a, b], N

)
.

It then follows that ΔW = LKW , where the vector K = (∂/∂u)α, u ∈ (−ε, ε) may
be thought of as representing the displacement under the variation of a point on the
flow line. We have

ΔV a = V a;bK
b −Ka

;bV
b − V aVcK

c
;bV

b,

and using the fact that (ΔJa);a = 0,

Δρ =
(
ρKb

)
;b
− ρKb;cV

bV c.

Substituting this into the action integral,

∂I

∂u

∣
∣
∣∣
u=0

= 2
∫

D

∗{[
(ρKb);b − ρKb;cV

bV c
] [

1 +
d(ρπ)

dρ

]}
.



20 The European Physical Journal H

Integrating by parts, we have

∂I

∂u

∣
∣
∣
∣
u=0

= 2
∫

D

∗({

ρ

[
1 +

d(ρπ)
dρ

]
V̇ a − ρ

[
d(ρπ)

dρ

]

;c

(gac − V aV c)

}

Ka

)

.

Thus
(μ+ ρ)V̇ a = p;b

(
gab − V aV b

)
,

where μ = ρ(1+π) is called the energy density and p = ρ2dπ/dρ is called the pressure.
To obtain the energy-momentum tensor, one varies the metric. The calculations

may be simplified by noting that the conservation of the current may be expressed as

Ja;a =
1√−g

∂

∂ua
(√−gJa) = 0.

Thus
√−gJa is unchanged when the metric is varied. We have

ρ2 =
1
−g
(√−gJa√−gJb) gab,

so
2ρΔρ =

(
JaJb − JcJcg

ab
)

Δgab
and

T ab =
[
ρ(1 + π) + ρ2 dπ

dρ

]
V aV b − ρ2 dπ

dρ
gab

= (μ+ ρ)V aV b − pgab.

We shall call a perfect fluid any matter whose energy-momentum tensor is of the
above form, whether or not it is derived from a Lagrangian. From the conservation of
energy-momentum, we have

μ;aV
a + (μ+ p)V a;a = 0,

(μ+ p)V̇ a − (gab − V aV b)p;b = 0.

These are the same as the equations derived from a Lagrangian. We shall call a perfect
fluid isentropic if the pressure p is a function of the energy density only. In this case
we can introduce a conserved density ρ and a potential π and derive the equations
and the energy-momentum tensor from a Lagrangian.

3.3 General relativity

We still have to specify the metric that was introduced in Section 3.1. In the special
theory of relativity the metric is fixed by imposing the requirement that its Riemann
tensor vanishes. However, we cannot adopt this requirement if we wish to include
gravitational effects. For as we have seen the equations of energy-momentum conser-
vation imply that a small isolated body moves on a geodesic. But if the metric were
flat there would not be a geodesic going round the Sun the way our planet does. Thus
we must relate the curvature of the metric to the matter distribution in such a way
as to describe the observed gravitational effects.

In choosing this relationship, we will be guided by the four following principles:

• First, by requirement (2), it must be expressible as a relation between tensors only.
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• Second it should not involve derivatives higher than the second of any field or the
metric, as all our experience has led us to believe that we need to specify only the
initial values of fields and their first derivatives to specify the future development
of a system.

• Third, it should incorporate the Newtonian principle that active gravitational
mass (the mass producing a gravitational field) and passive gravitational mass
(the mass acted on by a gravitational field) are equal. If this were not so we could
couple together two bodies with the same passive but different active gravitational
mass and obtain a combination that would continuously accelerate, which would
be contrary to experience. We saw above that passive gravitational mass and iner-
tial mass are both described in the theory of relativity by the energy-momentum
tensor. Thus this principle requires that the source of the curvature should be the
energy-momentum tensor only.

• Lastly, of course, the relationship must predict results for weak fields similar to
those of Newtonian theory.

Principles one, two, and three imply that the relationship must be of the form
Kab = Tab, where Kab is a symmetric tensor which depends on the curvature and
the metric tensors only. Since Tab satisfies the equations T ab;b = 0, we see that Kab

must satisfy Kab
;b = 0. The analogy with Newtonian theory suggests that Kab ought

to be linear in second derivatives of the metric tensor, as this corresponds to the
Newtonian potential. In this case it can be shown that the only possible tensor satis-
fying all these requirements is

Kab = γ

(
Rab − 1

2
gabR+ λgab

)
,

where Rab is the Ricci tensor, R is the curvature scalar, and γ and λ are constants.
Even if one did not require that Kab be linear in second derivatives of the metric

tensor, there would not seem to be any other tensors satisfying the other conditions,
though the author knows no proof of this. This point is important since the results
which will be obtained in Section 6 seem to show that singularities will occur if the
equations above hold. Thus one might ask whether there was any alternative relation
which would not lead to singularities. However, there do not appear to be any having
all the properties that seem desirable.

It may be, of course, that we will have to abandon one or more of those properties.
Thus we might allow third or higher derivatives of the metric to appear in the relations.
However, experience with the radiation damping force in electrodynamics suggests
that, when we have higher derivatives, we get unphysical ‘runaway’ solutions. Thus
we might be no better off. On the other hand one might abandon the equations
of conservation of energy-momentum. However, this would mean that T ab could no
longer be derived from a Lagrangian. Indeed it would be difficult to see what meaning
energy and momentum could have if they were not conserved in some sense.

There might be a further difficulty as follows. The ten equations

γ

(
Rab − 1

2
gabR+ λgab

)
= T ab

are not all independent since there are the four identities

γ

(
Rab − 1

2
gabR+ λgab

)

;b

= 0 = T ab;b.

They are however sufficient since the ten components gab cannot be completely de-
termined by the equations as there must always be four degrees of freedom to make
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coordinate transformations. If, however, one had a relation between T ab and a tensor
Kab which did not satisfy any identities, the system would be overdetermined unless
T ab satisfied only six independent equations as a consequence of the equations of the
fields. These would have to be chosen so as to be compatible with the tensor and
this might be difficult to arrange. For example, empty space would not in general be
compatible.

Requirement 3. Field equations. The Einstein equations hold:

γ

(
Rab − 1

2
gabR+ λgab

)
= T ab.

These equations may be derived by requiring that the action

I =
∫

D

∗[γ(R− 2λ) + L
]

be stationary under variation of gab. For,

Δ
[∗(R− 2λ)

]
= Δ

[
η(R − 2λ)

]
,

where η is the canonical 4-form, whence

Δ [∗(R − 2λ)] = (R− 2λ)Δη + η
(
RabΔg

ab + gabΔRab
)
.

The last term can be written as

ηgabΔRab = ηgab
[
(ΔΓ cab);c − (ΔΓ cac);b

]

= η
(
ΔΓ cabg

ab −ΔΓ dadg
ac
)
;c
.

Thus it may be transformed into an integral over the boundary ∂D, which vanishes as
ΔΓ abc vanishes on the boundary. The remaining terms then give the Einstein equations.

One might ask whether varying an action derived from some other scalar combina-
tion of the metric and curvature tensors might not give an alternative set of equations.
However, the curvature scalar is the only such scalar linear in second derivatives of
the metric tensor. This allows one to transform away a surface integral and be left
with an equation involving only second derivatives of the metric. If one tried any other
scalar such as RabRab or RabcdRabcd, one would obtain an equation involving fourth
derivatives of the metric.

It remains, of course, to show that the Einstein equations lead to results similar to
Newtonian theory for weak, almost static fields. This may be done as follows. Suppose
the metric is static. By this we mean that there exists a timelike Killing vectorW , with
W(a;b) = 0, which is proportional to the gradient of a scalar t (Wa;bWcη

abcd = 0). We
define the unit timelike vector V as f−1W , where f2 = W aWa. Then V a;b = V̇ aVb,
where V̇ a = V a;bV

b = f−1f;bg
ab represents the acceleration of the integral curves of

V . Then

V̇ a;a = V a;baV
b + V a;bV

b
;a

= RcbV
cV b.

The integral curves of V define the static frame of reference. That is to say, a particle
travelling on one of these curves would appear to remain at rest. Thus a particle
released from rest and following a geodesic would appear to have an initial acceleration
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of −V̇ with respect to the static frame. If f differs only slightly from a constant f0, we
may put f = f0(1+φ), where φ is small. Then V̇a ≈ φ;a. Thus the initial acceleration
of a freely moving particle released from rest is minus the gradient of φ. This suggests
that we should regard φ as the quantity analogous to the Newtonian potential.

We have

φ;abg
ab ≈ RabV

aV b = 2λ+ γ−1

(
TabV

aV b − 1
2
T aa

)
.

Suppose for simplicity that the energy-momentum tensor is that of a perfect fluid:

T ab = (μ+ p)V aV b − pgab,

where μ is the energy density and p the pressure of the fluid. Then

φ;abg
ab ≈ 2λ+

1
2
γ−1(μ+ 3p).

The term on the left is the Laplacian of φ with respect to the induced metric in the
surface t = const.. If the metric is almost flat, this will correspond to the Newtonian
Laplacian of the potential. On the right, the pressure p is normally small compared
to the density μ and may be neglected. Thus we obtain approximate agreement with
Newtonian theory if λ is small or zero and γ−1/2 is equal to 4πG, where G is the
Newtonian gravitational constant. By choosing units of mass appropriately, we can
arrange for γ to equal one. As λ must anyway be small, we shall generally take it to
be zero, though we shall bear in mind the possibility of other values.

3.4 Some exact solutions

By an exact solution we mean a manifold and metric which comply with postulates
(a) and (b) and which satisfy the Einstein equations for some specified form of the
energy-momentum tensor. However, to make the calculations humanly possible, it is
necessary to assume that the metric has a high degree of symmetry and that the
energy-momentum tensor has some very simple form which, at best, can be regarded
as only an approximation to that of matter in the universe, and which may fail to
be even that under extreme conditions. Thus exact solutions tend to be unrealistic in
two ways. Nevertheless, they are of interest because they may be reasonable approx-
imations to certain regions of spacetime and because they give examples of certain
global properties that spacetime could have. However, one should be cautious about
assuming that more realistic solutions would necessarily also have these properties.

The first and simplest example for empty space (zero energy-momentum tensor)
is Minkowski space. This is just the manifold R

4 with a flat Lorentz metric. Taking
u1, u2, u3, u4 as coordinates, the metric may be expressed as

ds2 =
(
du4
)2 − (du3

)2 − (du2
)2 − (du1

)2
.

These coordinates cover the entire manifold. Another form is obtained using coordi-
nates t, r, θ, φ, related to u1, u2, u3, u4 by

u4 = t, u3 = r cos θ, u2 = r sin θ cosφ, u1 = r sin θ sinφ,

where −∞ < t < ∞, 0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π. Then the metric takes the
form

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdφ2

)
.
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Note that the metric is apparently singular for r = 0 and for sin θ = 0. This is because
t, r, θ, φ are not admissible coordinates at these points. This is easily recognisable in
this case, though it is not always so simple to tell that an apparent singularity in the
metric is just due to a bad choice of coordinates.

Another, very interesting, representation of Minkowski space has been given by
Penrose [Penrose 1965a]. We introduce new coordinates v and w defined as

2v = t+ r, 2w = t− r,

and the metric becomes

ds2 = dvdw − (v − w)2
(
dθ2 + sin2 θdφ2

)
.

The 3-surfaces v=const. or w=const. are null, by which we mean that

gabv;av;b = 0, gabw;aw;b = 0.

We now introduce new ‘null’ coordinates p and q defined by

tan p = v, tan q = w, −π
2
< p <

π

2
, −π

2
< q <

π

2
, 0 ≤ p− q.

Then the metric is expressed as

ds2 = sec2 p sec2 q
[
dpdq − sin2(p− q)

(
dθ2 + sin2 θdφ2

)]
.

Thus the physical metric g is conformal to the metric g̃ given by

ds̃2 = dpdq − sin2(p− q)
(
dθ2 + sin2 θdφ2

)
.

This can be put in a more recognisable form by introducing new coordinates t1 and
r1 defined by

t1 = p+ q, r1 = p− q.

Then
ds2 =

(
dt1
)2 − (dr1)2 − sin2 r1

(
dθ2 + sin2 θdφ2

)
.

This metric has only been given on the manifold defined by

−π < t1 − r1 < π, −π < t1 + r1 < π, r1 > 0.

It can, however, be analytically extended to the manifold R
1×S

3, where −∞ < t1 <∞
and r1, θ, φ are regarded as coordinates on S

3. The apparent singularities in the metric
at r1 = 0 and r1 = π are similar to the singularity at the origin of polar coordinates.
They could be removed by transforming to local coordinates in some regions of those
points.

This shows that Minkowski space is conformal to the interior of the region of
R

1×S
3 shown in Figure 1. We may think of the boundary of this region as representing

the conformal structure of infinity of Minkowski space. We see that it consists of the
null surfaces p = π/2 (labelled J +) and q = −π/2 (labelled J −) and the points p =
π/2, q = π/2 (labelled I+), p = π/2, q = −π/2 (labelled I0), and p = −π/2, q = −π/2
(labelled I−). The image of any timelike geodesic in Minkowski space will approach
I+ and I−, while that of a null geodesic will approach J + and J −, and both ends
of the image of a spacelike geodesic will approach I0. Thus we may think of these as
representing timelike, null, and spacelike infinity, respectively.

This representation is a bit difficult to grasp as it is hard to visualise objects in
four dimensions or to draw diagrams of them. However, it can be simplified using the
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Fig. 1. The cylinder represents R
1 ×S

3 where two spatial dimensions have been suppressed.
The shaded region is the part conformal to Minkowski space.

fact that Minkowski space, as all the other solutions to be described, has spherical
symmetry. Thus it is sufficient to consider only the geometry of the t − r plane and
to regard each point of this plane as representing an S

2 whose radius is the value of
r at the point. As any metric on a two-dimensional manifold is locally conformal to
a flat metric, this geometry can be represented by a diagram in which null geodesics
run at ±45◦ to the vertical. Such a representation will be called a Penrose diagram.
That for Minkowski space is shown in Figure 2. We shall adopt the convention that
boundaries representing infinity will be denoted by single lines, those representing
the origin of polar coordinates by a dotted line, and those representing irremovable
singularities of the metric by double lines.

The Schwarzschild solution which will be described next represents the spherically
symmetric gravitational field outside some massive body. All the experiments which
have been carried out to test differences between the general theory of relativity and
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Fig. 2. The Penrose diagram of the t−r plane of Minkowski space. The dotted lines represent
curves of constant r.

Newtonian theory are based on predictions by this solution. The metric has the form:

ds2 =
(

1 − 2m
r

)
dt2 −

(
1 − 2m

r

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
.

It can be seen that this is static, i.e., ∂/∂t is a Killing vector. Comparison with
Newtonian theory shows that m should be regarded as the gravitational mass, as
measured from infinity, of the body producing the field.

Normally one would regard the above metric as being the solution only outside
some spherical body, that is, for r greater than some value, and that inside the body
the metric would have a different form. However, it is interesting to see what happens
when the metric is thought of as being an empty space solution for all values of r > 0.
There is an apparent singularity in the metric when r = 2m. However, this is simply
due to a bad choice of coordinates. We can introduce a new advanced time coordinate
v defined by

v = t+ r + 2m log(r − 2m).

The metric then takes the form

ds2 =
(

1 − 2m
r

)
dv2 − 2drdv − r2

(
dθ2 + sin2 θdφ2

)
.

This has only been given on the manifold for which r > 2m, but clearly it may be
analytically extended to give a nonsingular metric on the manifold for which r > 0.
Similarly, we could extend the original solution another way by introducing a retarded
time coordinate

w = t− [r + 2m log(r − 2m)
]
.

Using a combination of such extensions, one may obtain the maximal analytic exten-
sion, which was found by Kruskal [Kruskal 1960]. The Penrose diagram of its t − r
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Fig. 3. The t − r plane of the Schwarzschild solution.

plane is shown in Figure 3. This has some very interesting features. One sees that
there are two exterior regions where r > 2m (labelled I). As r tends to infinity the
metric tends to that of Minkowski space and the boundary at infinity is null, as for
Minkowski space. The two exterior regions are joined together by two interior regions
where r < 2m (labelled II). There are two singularities corresponding to r = 0: one
in the past and one in the future. As one approaches them, the scalar RabcdRabcd
tends to infinity. Thus they are true singularities of the metric and cannot be re-
moved by choosing different coordinates. The surface r = 2m is null and is called the
Schwarzschild surface. It has the property that any matter crossing it inevitably hits
the singularity at r = 0.

The Reissner-Nordström solution represents the field outside a spherically sym-
metric body carrying an electric charge. The metric is rather similar to that of the
Schwarzschild solution:

ds2 =
(

1 − 2m
r

+
e2

r2

)
dt2 −

(
1 − 2m

r
+
e2

r2

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
,

where m represents the gravitational mass and e the charge of the body. The above
metric may be regarded as the solution outside some body. However, as in the case
of the Schwarzschild solution, it is interesting to see what happens if we regard it
as the solution for all values of r. If e2 > m2, the metric is nonsingular everywhere
except at r = 0, where there is an irremovable singularity. This may be thought of
as representing a point charge which produces the field. If e2 ≤ m2, the metric has
apparent singularities at r = r+ and r = r−, where r± = m ± √

m2 − e2. As in the
Schwarzschild case, these may be removed by introducing suitable coordinates and
extending the manifold. The maximal analytic extension has been obtained by Graves
and Brill [Graves 1960] for the case e2 < m2 and by Carter [Carter 1966] for e2 = m2.
The Penrose diagrams of their t− r planes are shown in Figure 4. One sees that there
is now an infinite series of exterior regions where r > r+ (labelled I), joined together
by intermediate regions where r− < r < r+ (II) and interior regions where r < r−
(III). There are still irremovable singularities where r = 0.

In the earliest cosmologies, man, as lord of creation, placed himself firmly at the
centre. However, since the time of Copernicus, we have been successively demoted to
a medium-sized planet going round a medium-sized star on the outer edge of a fairly
average galaxy which is itself simply part of the local group of galaxies. Indeed, we
are now so modest that we would claim that our position was in no way specially
distinguished. We shall call this the Copernican principle, after Bondi [Bondi 1952].
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Fig. 4. The t − r plane of the Reissner-Nordström solution for e2 < m2.

This would seem to rule out the metric of spacetime being asymptotically flat as in
the Schwarzschild and Reissner-Nordström solutions. For such a metric, we would
have to be near the centre. This is not to say that such metrics cannot be reasonable
approximations in the vicinity of some massive body, but they could not be taken to
represent the whole of spacetime.

The Copernican principle as stated is somewhat vague. However, it would seem
reasonable to interpret it as implying that the universe is approximately spatially
homogeneous. By spatially homogeneous, we mean that there is a three-parameter
Lie group of isometries which acts freely on M and whose surfaces of transitivity are
spacelike 3-surfaces. In other words any point on one of these surfaces would be equiv-
alent to any other point on the same surface. Of course, the universe is not exactly
spatially homogeneous. There are local irregularities like stars and galaxies. Neverthe-
less it might seem reasonable to suppose that the universe was spatially homogeneous
on a large enough scale. It is difficult to test homogeneity directly by observation
because of the lack of any simple way of measuring the separation from us of distant
objects. However, observations seem to indicate that the universe is approximately
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spherically symmetric about us. Unless we assume that we occupy a special position
in the universe, we must conclude that the universe will be approximately spherically
symmetric about every point.

As has been shown by Walker [Walker 1944], exact spherical symmetry about
every point would imply that the universe was spatially homogeneous and admitted
a six-parameter Lie group of isometries whose surfaces of transitivity are spacelike
3-surfaces of constant curvature. The metric would have the Robertson-Walker or
Friedmann form

ds2 = dt2 − S2(t)
[

dr2

1 −Kr2
+ r2

(
dθ2 + sin2 θdφ2

)
]
,

where the quantity K is minus one, zero, or one according to whether the 3-surfaces
t = const. have negative, zero, or positive constant curvature, respectively. They are
diffeomorphic to R

3 in the first and second cases and to S
3 in the third. In this case,

the above coordinates are admissible over only half the surface, but one could use a
combination of such coordinate neighbourhoods to cover the whole surface. Of course,
one could identify suitable points in these surfaces. It would be possible to do this
even for the negative curvature case in such a way that the resultant surface was
compact. However, such a compact surface of constant negative curvature would have
no continuous group of isometries [Yano 1953]. Thus there would seem little point
in making such an identification, as the original reason for considering this class of
solutions was that they had a six-parameter group of isometries. In fact, the only
identification which would not reduce the dimension of the isometry group would
be to identify antipodal points on S

3 in the case of a surface of positive constant
curvature.

The symmetry of these Robertson-Walker solutions requires that the energy-
momentum tensor have the form of that of a perfect fluid whose density μ and pressure
p are functions of the coordinate t only and whose flow times are the curves r, θ, φ
constant. This fluid should be thought of as a smeared out approximation to the mat-
ter in the universe. The function S(t) represents the separation of neighbouring flow
lines. By the Einstein equations, we have

3
Ṡ2 +K

S2
+ λ = μ,

2SS̈ + Ṡ2 +K

S2
+ λ = −p,

where a dot indicates differentiation with respect to t. For completeness, we have
included the possibility of λ being nonzero.

It would be reasonable to assume that μ is positive and that p is non-negative.
Then if λ is zero, it can be seen that S could not be constant. In other words, the uni-
verse would be either expanding or contracting. In fact, observations of other galaxies
indicate that they are moving away from us, hence that the universe is expanding at
the present time.

Eliminating K between the first and second equations, we obtain

μ̇ = −3(μ+ p)
Ṡ

S
,

1
2
(μ+ 3p) − λ = −2S̈S

S2
.

The first equation could have been obtained directly from conservation of energy-
momentum. It shows that the density decreases as the universe expands, as one would
expect. From the second equation, one can see that S must have been zero a finite
time ago if μ+ 3p− 2λ is positive. This would be a real singularity of the metric as
the density and hence some components of the Ricci tensor would be infinite there.
This singularity is the most striking feature of the Robertson-Walker solutions. It
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would imply that the universe (or at least that part of which we can have physical
knowledge) had a beginning a finite time ago. However, it must be emphasised that
this result depended on assuming exact spatial homgeneity and spherical symmetry.
While spatial homogenity and spherical symmetry may be reasonable approximations
on a large enough scale at the present time they certainly do not hold locally. One
might think that, as one traced the evolution of the universe back in time, the local
irregularities would grow and could prevent the occurrence of singularity, causing
the universe to ‘bounce’ instead. Whether this could happen or whether physically
realistic solutions with inhomogeneities would contain singularities is a question of
great importance for cosmology and constitutes the principal problem dealt with in
this essay. In Section 6, it will be shown that singularities are inevitable in solutions
which satisfy certain reasonable global conditions and in which the energy-momentum
tensor satisfies a reasonable inequality.

If the relation between p and μ is specified, the Einstein equation can be solved
to give S as a function of the time t. In fact, the pressure is very small at the present
epoch. If we take it and λ to be zero, we have the first integrals

μ =
M

S3
, 3MṠ2 − M2

S
= E,

where M and E are constants. The first equation expresses the conservation of mass
when the pressure is zero. In the second equation, we may think of E as representing
the kinetic plus the potential energy of the matter. If E is negative, S will increase
to some maximum value and then decrease to zero. if E is positive or zero, S will
increase indefinitely. E is related to the quantity K by K = E/3M . If we introduce
a function τ(t) given by

dτ
dt

=
1
S
,

we have the three cases:

K = −1, S =
E

18
(cosh τ − 1), t =

E

18
(sinh τ − τ),

K = 0 (Einstein-de Sitter solution), S = t2/3,

K = +1, S = − E

18
(1 − cos τ), t = − E

18
(τ − sin τ).

The Penrose diagrams of their t− r planes are shown in Figure 5.
We shall also describe three other spaces which are interesting for their global

properties but which probably do not correspond to anything occurring in nature.
The first two are the Lorentz spaces of constant curvature. For these,

Rabcd = F (gacgbd − gadgbc),

where F is a constant. Then,

Rab − 1
2
gabR = −3Fgab.

They may be regarded as solutions for λ = 3F and no matter, or for λ = 0 and
a perfect fluid with density −3F and pressure 3F . However, the latter would seem
unreasonable physically as it would necessitate either negative density or negative
pressure. The constant curvature space for F zero is of course Minkowski space. That
for F negative is known as de Sitter space. It has the topology R

1 × S
3 (the possible
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Fig. 5. The t − r planes of the Robertson-Walker solutions for p = 0 = λ.

Fig. 6. The t − r plane of de Sitter space. The shaded region is the part representing the
steady-state universe.

identifications have been studied by Calabi and Markus [Calabi 1962]). It can be
represented in the Robertson-Walker form with K = 1 and

S =
1√−F cosh

√−Ft.

Although it is geodesically complete, there are pairs of points which cannot be joined
by any geodesic. This is in contrast to the case for a geodesically complete positive
definite metric, where there is at least one geodesic between each pair of points.

Another form of the metric of de Sitter space is obtained by taking K = 0 and S =
e
√−Ft (see Fig. 6). This metric covers only half of de Sitter space and so is geodesically

incomplete in the past. It was proposed as a model of the steady-state universe by
Bondi and Gold [Bondi 1948] and by Hoyle [Hoyle 1948]. In this theory the flow lines
of the matter are taken to be the curves r, θ, φ constant. As the universe expands and
the matter moves further apart it is assumed that more matter is continuously created
to maintain the density at a constant value. Bondi and Gold did not seek to provide
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field equations for this theory, but Hoyle and Narlikar [Hoyle 1964a] have pointed out
that the ordinary Einstein equations (with λ = 0) can be satisfied if, in addition to
the ordinary matter, one introduces a scalar field of negative energy density. This C
field would also be responsible for the continuous creation of matter.

The steady-state theory has the advantage of making simple and definite predic-
tions. However, these do not seem to be in agreement with current observations, so
the theory has largely (and regretfully) been abandoned.

The space of constant curvature for which F is positive is called the anti-de Sitter
space. It has the topology R

3 ×S
1 and so has a covering space with topology R

4. The
metric can be represented in the Robertson-Walker form with K = −1 and

S =
1√
F

cos
√
Ft.

However, this only covers part of the space and has apparent singularities at

t = ± π

2
√
F
.

These can be removed by taking a different set of coordinates t′, r′, θ, φ, for which the
metric has the form

ds2 =
1√
3F

cosh2
√

3Fr′ dt′2 − dr′2 − sinh2 r′(dθ2 + sin2 θdφ2).

This covers the whole space. The Penrose diagram of its t′ − r′ plane is shown in
Figure 7. The timelike geodesics which are orthogonal to a surface t′ = const. intersect
at points to the past and future of the surface. As these are the curves r, θ, φ constant
in the Robertson-Walker coordinates, one can see why the apparent singularities arise.
One can also see that there are pairs of points which can be joined by a timelike curve
but not be a timelike geodesic.

The last example to be described is a flat two-dimensional space due to Misner
[Misner 1965]. This is diffeomorphic to R

1 × S
1. In other words, it is a cylinder. The

coordinates are t (−∞ < t < ∞) and φ (0 ≤ φ ≤ 2π), where φ = 0 and φ = 2π are
identified. The metric is

ds2 = 2dφdt+ t dφ2.

If we regarded this metric as being given only on the portion of the cylinder for which
t > 0, we could obviously extend it analytically to get a non-degenerate metric on the
entire manifold R

1 × S
1 described by the coordinates −∞ < t < ∞ and 0 ≤ φ ≤ 2π.

This extension would be maximal in the sense that it could not be regarded as an open
subspace of a larger two-dimensional manifold with an analytic non-degenerate metric.
However, the region t > 0 has another inequivalent maximal analytic extension. If for
t > 0 we define new coordinates t̃, φ̃ by

t̃ = t, φ̃ = φ+ 2 log t,

the metric takes the form
ds2 = −2dφ̃dt̃+ t̃ dφ̃2.

This can obviously be analytically extended to the manifold R
1×S

1 defined by −∞ <
t̃ < ∞ and 0 ≤ φ̃ ≤ 2π. However, this maximal extension is inequivalent as φ̃ is not
a continuous function of the coordinates t, φ at t = 0.

This example has a property which will be of interest later and which is related
to the above behaviour. Consider the extension defined by the coordinates t, φ. There
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Fig. 7. The t′ − r′ plane of anti-de Sitter space. The diagram shows the timelike geodesics
orthogonal to a surface t′ = const.. They intersect at points to the past and future of the
surface.

are geodesics which enter the compact region between t = 1 and t = 0, do not leave
it again, and are not extendible to arbitrary values of the affine parameter. We shall
call this kind of incompleteness in a compact region Misner incompleteness. It cannot
occur in positive-definite metrics.

Actually, the incomplete geodesics in the t, φ extension could be completed if we
made the t̃, φ̃ extension instead. However, there are other geodesics which can be
continued to arbitrary values of the affine parameter in the t, φ extension, but which
cannot be so continued in the t̃, φ̃ extension. As each extension is maximal, we cannot
complete all the geodesics.

4 The physical significance of curvature

4.1 Timelike curves

In Section 3, we saw that if the metric was static there was a relation between the
magnitude of the timelike Killing vector and the Newtonian potential. We were able
to tell whether a body was in a gravitational field by whether, if released from rest,
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it would accelerate with respect to the static frame defined by the Killing vector.
However, in general, spacetime will not have any Killing vectors. Thus we will not
have any special frame against which to measure the acceleration of a body. The best
we can do is to take two bodies close together and measure their relative acceleration.
This will enable us to measure the gradient of the field. If we think of the metric
as being analogous to the Newtonian potential, the gradient of the Newtonian field
would correspond to the second derivatives of the metric. These are described by
the Riemann tensor. Thus one would expect that the relative acceleration of two
neighbouring bodies would be related to some components of the Riemann tensor.

In order to investigate this relation more precisely, we shall examine the behaviour
of a congruence of timelike curves with timelike unit tangent vector v, with g(v, v) = 1.
These curves could represent the paths of small test particles. In this case, they would
be geodesics. Or they might represent the flow lines of a fluid. If this was a perfect
fluid, the energy-momentum tensor would be

T ab = μV aV b − phab,

where μ is the energy density, p the pressure, and hab = gab − V aV b is the metric
in the subspace Hq of Tq orthogonal to V . In this case, the conservation equations
T ab;b = 0 would give

μ̇+ (μ− p)V a;a = 0, (μ+ p)V̇ a − p;bh
ab = 0, (1)

where μ̇ = μ;aV
a is the rate of change of the energy density with time on a flow line

and V̇ a = V a;bV
b is the acceleration of the flow line with respect to a geodesic curve

at each point. We see that V̇ a is given by the gradient of the pressure, as one would
expect.

Suppose λ(t) is a curve with tangent vector z = (∂/∂t)λ. Then we may construct
a family λ(t, s) of curves by moving each point of the curve λ(t) a distance s along
the integral curves of V . If we now define Z as (∂/∂t)λ(t, s), it follows that LV Z = 0.
We may interpret Z as representing the separation of points equal distances along
two neighbouring integral curves of V . We have

D
∂s
Za = V a;bZ

b. (2)

If Z is initially orthogonal to V , it will not remain orthogonal unless V is geodesic
(V̇ a = 0). We shall define ⊥ Z as the part of Z orthogonal to V , where ⊥ indicates
projection by hab, i.e.,

⊥ Za = habZ
b.

We may think of ⊥ Z as representing the separation in the 3-surface orthogonal to V
of two neighbouring curves. It obeys

⊥ D
∂s

(⊥ Za) = V a;b ⊥ Zb. (3)

This gives the rate of separation in the 3-surface orthogonal to V of two neighbouring
curves. Operating with D/∂s,

D
∂s

[
⊥ D
∂s

(⊥ Za)
]

= −Rabcd ⊥ ZcV bV d + V̇ a;c ⊥ Zc − V̇ aV̇ b ⊥ Zb. (4)

This equation, which is known as the deviation or Jacobi equation, gives the relative
acceleration of two neighbouring curves. We see that this depends only on the Riemann
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tensor if the curves are geodesic. One could think of the term RabcdV
bV d as a sort of

tidal force, causing neighbouring bodies to accelerate relative to each other.
In order to investigate further the significance of this equation, we shall introduce

dual orthonormal bases E1, E2, E3, E4 and E1, E2, E3, E4 of Tq and T ∗
q , respectively,

at some point q on an integral curve γ(s) of V with E4 = V and Fermi propagate them
along the curve to obtain orthonormal bases at all points of the curve. Then a tesnor
field K of type (r, s) along the curve can be expressed in terms of its components with
respect to these bases:

K =
ab...d

K
ij...l

E
a
⊗ E

b
⊗ . . .⊗ E

d
⊗

i

E ⊗
j

E ⊗ . . .⊗
l

E,

where we have placed the indices above and below the letter K to distinguish them
from indices with respect to a coordinate basis. The indices may be raised and lowered
using the components

ab
g and g

ab
of the metric tensor with respect to the bases. As the

bases are chosen to be orthonormal, the nonzero components will be

g
11

=
11
g = g

22
=

22
g = g

33
=

33
g = − g

44
= −44

g = −1.

We shall be interested in tensors in the subspaces Hq and H∗
q of Tq and T ∗

q orthogonal
to V . These are spanned by the bases E1, E2, E3 and E1, E2, E3. We will denote the
indices of components of such tensors by Greek letters α, β, and so on, which will take
the values 1, 2, 3 only. Using this convention, we may express the vector ⊥ Z as

⊥ Z =
α

ZE
α
,

where
d
ds
Zα =

α

V ;β

β

Z

and
α

V ;β are the components with respect to the bases E1, E2, E3 and E1, E2, E3 of the

covariant derivative of V . Since the components
α

Z obey a linear differential equation,
they can be expressed in terms of their values at some point q by

α

Z(s) =
α

A
β
(s)

β

Z
∣
∣
q
,

where
α

A
β
(s) is a 3 × 3 matrix which satisfies

d
ds

α

A
β
(s) =

α

V ;γ

γ

A
β

and is the unit matrix at q.
For convenience, we shall adopt matrix notation for products. Thus the above

equations will be written as

Z(s) = A(s) · Z(q),
d
ds
A = V · A,

where
(V )αβ = V

α;β
.
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Note that, because of the signature of the metric,

(V · A)αβ = −
∑

γ

V
α;γ

A
γβ
.

The matrix A can be expressed as

A = O · S,
where O is an orthogonal matrix and S is a symmetric matrix. These will both be the
unit matrix at q. The matrix O may be thought of as representing the rotation that
neighbouring curves have undergone with repsect to the Fermi propagated basis. The
matrix S represents the separation of these curves from γ(s). The determinant of S,
which equals the determinant of A, may be thought of as representing the 3-volume
of the element of the surface orthogonal to γ(s) marked out by neighbouring curves.

At q, where A is the unit matrix,

d
ds

(O) · S +O · d
ds
S = V ·O · S = V .

But
O ·OT = I,

where I is the identity matrix. So

d
ds

(O) ·OT +O · d
ds

(O)T = 0.

Thus dO/ds is antisymmetric at q. However, dS/ds is symmetric. Therefore, the rate
of change of the rotation of neighbouring curves at q is given by the antisymmetric
part of the matrix V , while the rate of change of their separation is given by the
symmetric part of V , and the rate of change of volume is given by the trace of V .
Thus we may define the instantaneous vorticity as

ω =
1
2
(
V − V T

)
,

the instantaneous rate of separation as

ψ =
1
2
(
V + V T

)
,

and the volume expansion as
θ = Tr (V ) .

We may also define the shear as the trace-free part of ψ, viz.,

σ = ψ − 1
3
θI.

Returning for a moment to coordinate indices, we will define the vorticity and shear
tensors and the expansion as follows:

ωab = ha
chb

dV[c;d], σab = ha
chb

dV(c;d) − 1
3
habθ, θ = Va;bh

ab = Va;bg
ab.

We may also define the vorticity vector as

ωa =
1
2
ηabcdVbωcd =

1
2
ηabcdVbVc;d.



Stephen Hawking: Singularities and the geometry of spacetime 37

The covariant derivative of the vector V can be expressed in terms of these quantities
as

Va;b = ωab + σab +
1
3
habθ + V̇aVb. (5)

This decomposition is directly analogous to that of the gradient of the fluid velocity
vector in hydrodynamics.

To obtain equations for the propagation of the vorticity, shear, and expansion, we
use the deviation equation (4), which can be expressed as

d2

ds2
A = (−G+ F ) ·A, (6)

where
(G)αβ = R

α4β4

is the ‘tidal force’, and
(F )αβ = V̇

α;β
− V̇

α
V̇
β

depends on the acceleration. By definition we have

ω =
1
2

[
d
ds

(A) ·A−1 − (AT
)−1 · d

ds
AT

]
,

ψ =
1
2

[
d
ds

(A) ·A−1 +
(
AT
)−1 · d

ds
AT

]
,

and
θ = Tr

(
ψ
)

= (detA)−1 d
ds

(detA) .

Substituting in (5),

d
ds
ω = −ω · ψ − ψ · ω +

1
2
(
F − FT

)
. (7)

We see that the propagation of vorticity depends on the antisymmetric gradient of the
acceleration but not on the ‘tidal force’. If the curves are geodesics and the vorticity
vanishes at one point on a curve, then it will vanish everywhere on that curve. Another
form of the above equation is

d
ds
(
AT · ω ·A) =

1
2
AT · (F − FT

) ·A. (8)

Thus AT · ω ·A is constant if the curves are geodesics. If the curves are the flow lines
of an isentropic fluid, a straightforward calculation gives

1
2
(
F − FT

)
= −ω ṗ

μ+ p
.

Thus we have the interesting conservation law

pAT · ω · A = const.,

where
log p =

∫
dp
μ+ p

.
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For the rate of separation tensor, we have

d
ds
ψ = −G− ω · ω − ψ · ψ +

1
2
(
F + FT

)
.

This contains the ‘tidal force’ term G. Taking the trace,

d
ds
θ = −Tr(G) + 2ω2 − 2σ2 − 1

3
θ2 + Tr(F )

= −RabV aV b + 2ω2 − 2σ2 − 1
3
θ2 + V̇ a;a, (9)

where
2ω2 = Tr(ω · ωT) ≥ 0, 2σ2 = Tr(σ · σT) ≥ 0.

This equation, which was discovered by Landau and independently by Raychaudhuri,
will be of great importance later. From it, one sees that vorticity induces expansion, as
might be expected by analogy with centrifugal force, while shear induces contraction.

The above equations enable one to calculate the propagation of the vorticity, shear,
and expansion along the integral curves of V if one knows the Riemann tensor. We
saw in Section 2 that the Riemann tensor could be decomposed into the Weyl tensor
and terms involving the Ricci tensor:

Rabcd = Cabcd − ga[dRc]b − gb[cRd]a − 1
3
Rga[cgd]b.

The Ricci tensor is given by the Einstein equations:

Rab − 1
2
gabR = Tab.

Thus we see that the Weyl tensor is that part of the curvature which is not determined
locally by the matter distribution. However, it cannot be entirely arbitrary as the
Riemann tensor must satisfy the Bianchi identities. These give

Rab[cd;e] = 0, Cabcd;d = Jabc,

where [Kundt 1962]

Jabc = Rc[a;b] +
1
6
gc[bR;a]. (10)

These equations are rather similar to Maxwell’s equations in electrodynamics:

F ab;b = Ja,

where F ab is the electromagnetic field tensor and Ja is the source current. Thus in a
sense we could regard the Bianchi identities (10) as field equations for the Weyl tensor,
giving that part of the curvature at a point that depends on the matter distribution
at other points.

In electrodynamics, we may split the field tensor F ab into electric and magnetic
components with respect to a unit timelike vector field V :

Ea = −FabV b, Ha = −1
2
F bcηbcadV

d.

Then the equations F ab;b = Ja may be written in terms of the electric and magnetic
fields:

Eb;b + EbV̇
b − 2Hbω

b = JbVb
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and

−ηabcdV bHc;d − ha
bĖb + ωa

bEb + σa
bEb − 2

3
θEa − ηabcdV

bV̇ cHd = habJ
b.

These correspond to the equations

divE = ρ, curlH + Ė = −J,
where ρ = VbJ

b is the charge density. The extra terms arise because the vector field V
used to obtain the splitting into electric and magnetic components does not in general
have vanishing covariant derivative. The remaining Maxwell’s equations F[ab;c] = 0
may be expressed in a similar manner as

Hb
;b +HbV̇

b + 2Ebωb = 0

and

−ηabcdV bEc;d + ha
bḢb − ωa

bHb − σa
bHb +

2
3
θHa − ηabcdV

bV̇ cEd = 0.

These correspond to the equations

divH = 0, −curlE + Ḣ = 0.

Following the analogy between the Maxwell equations and the Bianchi identities, we
shall split the Weyl tensor into ‘electric’ and ‘magnetic’ components:

Eab = −CacbdV cV d, Eab = E(ab), Eaa = 0,

Hab =
1
2
Ca

pqrηqrbsVpV
s, Hab = H(ab), Ha

a = 0.

The quantities Eab and Hab each have five independent components. We call Eab the
‘electric’ components since they contribute to the ‘tidal force’, inducing relative ac-
celeration of neighbouring curves in a manner analogous to that in which the electric
components of the electromagnetic field cause acceleration of a charged particle. Ex-
pressing the Bianchi indentities in terms of the fields Eab and Hab, we have [Trümper
1964; Hawking 1965a, 1966b]:

ha
bEbc;dh

cd − 3Habω
b + ηabcdV

bσceH
de = Ja

cdVcVd, (11)

ha
bHbc;dh

cd + 3Eabωb − ηabcdV
bσceE

de =
1
2
ηabcdJ

cdeV bVe, (12)

ha
chb

dĖcd + h(a
fηb)cdeV

cHf
d;e + Eabθ − Ec(aωb)c − 3Ec(aσb)c + habEcdσ

cd

−2Hd
(aηb)cdeV

cV̇ e = JcdeVchd(ahb)e, (13)

ha
chb

dḢcd − h(a
fηb)cdeV

cEf
d;e +Habθ −Hc

(aωb)c − 3Hc
(aσb)c + habHcdσ

cd

−2Ed(aηb)cdeV cV̇ e = −1
2
hf(aηb)cdeV

cJdef . (14)
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If we assume that the energy-momentum tensor is that of a perfect fluid, then the
source terms on the right are:

Ja
bcVbVc = −1

3
ha

bμ;b,
1
2
ηabcdJ

cdeV bVe = (μ+ p)ωa,

JcdeVchd(ahb)e =
1
2
(μ+ p)σab, −1

2
hf(aηb)cdeV

cJdef = 0.

It can be seen that equations (11)–(14) are of the form:

divE = ρ, divH = ρ̃, curlH + Ė = J, curlE − Ḣ = 0,

where the quantity ρ, analogous to the electric charge, is the gradient of the density,
the quantity ρ̃, which would correspond to the magnetic charge if such existed, de-
pends on the vorticity, and the quantity J , analogous to the electric current, depends
on the shear. One may also notice that the term which would correspond to the mag-
netic current vanishes, though of course this would not necessarily be true for more
general energy-momentum tensors.

Equations (7)–(9) and (11)–(14) do not form a complete set since, to evaluate the
covariant derivatives, we would also have to know the components of the metric and
the connection and to relate them to the Ricci and Weyl tensors. However, there are
certain important cases in which we can avoid doing this. Suppose the metric differed
only slightly from a metric that was conformally flat (Weyl tensor vanishes). Then
Eab and Hab would be small quantities and to the first order we could perform all
derivatives with the connection of the conformally flat metric. For example, if the
metric differed only slightly from a flat metric, we could introduce a timelike vector
field V whose covariant derivative was also a small quantity and, neglecting products
of such quantities, we would have:

Ea
b
;b = −1

3
ha

bμ;b, (15)

Ha
b
;b = (μ+ p)ωa, (16)

Ėab +H(a
d;eηb)cdeV

c =
1
2
(μ+ p)σab, (17)

Ḣab − E(a
d;eηb)cdeV

c = 0, (18)

where the derivatives are performed with the connection of the flat metric. Another
example would be a metric which differed only slightly from the metric of one of
the Friedmann models discussed in the previous section, as these are all conformally
flat. In such a metric, we may introduce a vector field V whose covariant derivative
Va;b differs only slightly from habθ0/3, where θ0 is the value of the expansion in the
undisturbed Friedmann model. Then, to first order, we get the same equations as
above except that extra terms Eabθ0 and Habθ0 appear on the left of equations (17)
and (18) and the derivatives are performed with the connection of the undisturbed
model.

In the vicinity of the Earth the metric is very nearly flat, so equations (15)–(18)
should hold to very high accuracy. On a larger scale, it seems probable that the
metric is similar to that of a Friedmann model so, with extra terms, equations (15)–
(18) should be reasonably accurate on a cosmological scale too. They may be used to
describe disturbances in the intergalactic medium and to investigate the propagation
and absorption of gravitational radiation [Hawking 1966b].
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4.2 Null curves

We may also consider the deviation equation for a congruence of null curves with
tangent vector K, where g(K,K) = 0. For simplicity, we shall assume that the curves
are geodesic. They could be thought of as representing the paths of rays of light.
There are two important differences between this case and that of the timelike curves
considered in the previous section. First, we could normalise the tangent vector V to
the timelike curves by requiring g(V, V ) = 1. In effect, this meant that we parametrised
the curves by the arc length s. However, this is clearly impossible with null curves,
as they have zero arc length. The best we can do is to choose an affine parameter v.
Then the tangent vector K will obey

D
∂v
Ka = Ka

;bK
b = 0.

However, we could multiply v by a function f which was constant along each curve.
Then fv would be another affine parameter and the corresponding tangent vector
would be f−1K. Thus given the curves, the tangent vector is only really unique up to
a constant factor along each curve. The second difference is that Hq, the subspace of
Tq orthogonal to K, includes the vector K itself since g(K,K) = 0. We will call the
vector space Hq modulo the vector K, the screen space Sq. That is Sq is the space of
equivalence clases of vectors of Hq which differ only by a multiple of K.

As before, we will introduce dual bases E1, E2, E3, E4 and E1, E2, E3, E4 of Tq
and T ∗

q at some point q on a curve γ(v). However, we will not choose them to be
orthonormal. We will take E4 equal to K, E3 to be some other null vector having
unit product with E4, i.e.,

g(E3, E3) = 0, g(E3, E4) = 1,

and E1 and E2 to be unit spacelike vectors, orthogonal to each other and to E3 and
E4, i.e.,

g(E1, E1) = −1 = g(E2, E2), g(E1, E2) = 0 = g(E1, E3) = g(E1, E4),

and so on. It can be seen that E1, E2, and E4 constitute a basis for Hq, while E1 and
E2 alone are a basis for Sq. We shall call a basis having the properties of E1, E2, E3, E4

above pseudo-orthonormal. By parallel transporting them along the geodesic γ(v), we
may obtain a pseudo-orthonormal basis at each point of γ(v).

We shall use this basis to analyse the deviation equation for null geodesics. If
Z is the vector representing the separation of corresponding points on neighbouring
curves, we have, as before LKZ = 0, so

D
∂v
Za = Ka

;bZ
b, (19)

and
D2

∂v2
Za = −RabcdZcKbKd. (20)

If we take Z to be orthogonal to K initially, it will remain orthogonal, because K is
geodesic since

D
∂v

(ZaKa) =
1
2
(KaK

a);bZb = 0.

Then we can express Z as
α

ZEα, where α, β, . . ., now take the values 1, 2, and 4. We
will have

d
dv

α

Z =
α

K ;β

β

Z.
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However,
α

K ;4 = 0, since K is geodesic. Thus,

d
dv

m

Z =
m

K ;n

n

Z,

where m,n, . . . , take the values 1 and 2 only. But
m

Z are the components of Z in
the screen space Sq with respect to the basis E1 and E2 of Sq. So we see that the
propagation of the projection of Z onto Sq depends only on itself and not on the other
components of Z.

As in the previous section, we may express
m

Z in terms of their values at some
point q by

m

Z(v) = Ãmn(v)
n

Z
∣
∣
q
,

where Ãmn(v) is a 2 × 2 matrix which satisfies

d
dv
Ãmn(v) = Km

;pÃ
p
n(v),

and which is the unit matrix at q. Using matrix notation as before, we will express Ã
as the product of an orthogonal 2× 2 matrix Õ and a symmetric 2× 2 matrix S̃. The
matrix Õ may be thought of as representing the rotation, measured in the screen space,
which neighbouring geodesics have undergone with repsect to the parallel propagated
basis E1 and E2, while S̃ represents the separation measured in the screen space of
neighbouring geodesics from the geodesic γ(v). We have

d
dv
(
Õ · S̃) = K · Õ · S̃,

where (
K
)
mn

= K
m;n

.

As before, we will call the antisymmetric part of the matrix K the vorticity ω̃, the
symmetric part of K the rate of separation ψ̃, and the trace of K the expansion θ̃.
We may also define the shear σ̃ as the trace-free part of ψ̃.

Using equations (19) and (20), we may obtain equations for the propagation of
these quantities analogous to those of the previous section. We have

d
dv

m

Z =
m

K;n

n

Z,
d2

dv2

m

Z = −
m

R
4n4

n

Z,

since
m

R
444

= 0,

as the Riemann tensor is antisymmetric in the last two positions. Thus

d
dv
Ã = K · Ã

and
d2

dv2
Ã = −G̃ · Ã, (21)

where (
G̃
)
mn

= R
m4n4

.
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Then we have, as before,

d
dv
ω̃ = −ω̃ · ψ̃ − ψ̃ · ω̃, (22)

d
dv

(
Ã

T · ω̃ · Ã
)

= 0, (23)

d
dv
ψ̃ = −G̃− ω̃ · ω̃ − ψ̃ · ψ̃, (24)

d
dv
θ̃ = −Tr

(
G̃
)

+ 2ω̃2 − 2σ̃2 − 1
2
θ̃2

= −RabKaKb + 2ω̃2 − 2σ̃2 − 1
2
θ̃2. (25)

4.3 Conjugate points

In Section 4.1 we saw that the components of the vector Z which represented the
separation between a curve γ(s) and a neighbouring curve in a congruence of timelike
geodesics satisfied the Jacobi equation

D2

∂s2

α

Z = −
α

R
4β4

β

Z (α, β = 1, 2, 3). (26)

A solution of this equation will be called a Jacobi field along γ(s). Since a solution

may be specified by giving the values of
α

Z and d
α

Z/ds at some point on γ(s), there will
be six independent Jacobi fields along γ(s). There will be three independent Jacobi
fields which vanish at some point q of γ(s). They may be expressed as

α

Z(s) = Aαβ(s)
d
ds

β

Z

∣∣
∣
∣
q

, (27)

where
d2

ds2
Aαβ(s) = −

α

R
4γ4
Aγβ(s),

and Aαβ(s) is a 3×3 matrix which vanishes at q. These Jacobi fields may be thought of
as representing the separation of neighbouring geodesics through q. Adopting matrix
notation, we may define the vorticity, shear, and expansion of the Jacobi fields along
γ(s) which vanish at q :

ω =
1
2

[
d
ds
(
A
) ·A−1 − (AT

)−1 · d
ds
AT

]
,

σ =
1
2

[
d
ds

(A) · A−1 +
(
AT
)−1 · d

ds
AT

]
− 1

3
Iθ,

θ = (detA)−1 d
ds

(detA).

These will obey the equations for geodesics derived in Section 4.1. In particular,

AT · ω ·A =
1
2

[
AT · d

ds
A− d

ds
(
AT
)
A

]

will be constant along γ(s). But it vanishes at q as A is zero. Therefore ω will be zero
wherever A is non-singular.
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We shall say that a point p on γ(s) is conjugate to q along γ(s) if there is a Jacobi
field along γ(s), not identically zero, which vanishes at q and p. We may think of p
as a point where neighbouring geodesics through q intersect. The Jacobi fields along
γ(s) which vanish at q are described by the matrix A. Thus a point p is conjugate to
q along γ(s) if and only if A is singular at p. The expansion θ is defined as

θ = (detA)−1 d
ds

(detA).

Since A obeys the equation
d2

ds2
A = −G · A,

where G is finite, d(detA)/ds will be finite. Thus a point p will be conjugate to q
along γ(s) if θ becomes infinite there. The converse will also be true since

θ =
d
ds

log(detA),

and A can be singular only at isolated points or else it would be singular everywhere.
We shall take s to be zero at q. Near q for s > 0, the expansion θ of the matrix

A will be positive. However, for greater values of s, θ may become negative. We have
the following lemma:

Lemma 1. If at some point γ(s1), s1 > 0, the expansion θ has a negative value θ < 0,
and if RabV aV b ≥ 0 everywhere, then there will be a point conjugate to q along γ(s)
between γ(s1) and γ(s1 + 3/− θ1).

The expansion θ of the matrix A obeys the Raychaudhuri equation derived in
Section 4.1:

d
ds
θ = −RabV aV b − 2σ2 − 1

3
θ2, (28)

where we have used the fact that the vorticity is zero. All the terms on the right-hand
side are negative. Thus for s > s1,

θ ≤ 3
s− (s1 + 3/− θ1)

,

so θ will become infinite and there will be a point conjugate to q for some value of s
between s1 and s1 + 3/− θ1.

In other words, if RabV aV b ≥ 0 and the neighbouring geodesics through q start
converging on γ(s), some neighbouring geodesic will actually intersect γ(s). By the
Einstein equations,

RabV
aV b = TabV

aV b − 1
2
T.

If we assume that the energy-momentum tensor is that of an electromagnetic field,
the expression on the right above is always non-negative. If the energy-momentum
tensor is that of a perfect fluid with energy density μ and pressure p, then the above
expression will be non-negative if

μ+ p ≥ 0, μ+ 3p ≥ 0.

These would seem very reasonable requirements. This point will be discussed further
in Section 6.
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We shall also consider the congruence of timelike geodesics normal to a spacelike
3-surface H . By a spacelike 3-surface, we mean the imbedded three-dimensional sub-
manifold of an open set D of M defined by f = 0, where f is a C2 function on D
and

gabf;af;b > 0 where f = 0.

We define Y , the unit normal to H , by

Y a =
(
gbcf;bf;c

)−1/2
gadf;d,

and the second fundamental tensor X of H by

Xab = ha
chb

dYc;d,

where hab = gab − YaYb is called the first fundamental tensor (or induced metric
tensor) of H . It follows from the definition that X is symmetric. The congruence
of timelike geodesics normal to H will consist of the timelike geodesics whose unit
tangent vector V equals the unit normal Y at H . Then we have

Va;b = Xab at H.

The vector Z which represents the separation of a neighbouring geodesic normal to
H from γ(s), a normal geodesic to H , will obey the Jacobi equation (26). At a point
q on γ(s) at H , it will satisfy the initial condition

d
ds

α

Z =
α

X
β

β

Z. (29)

We shall express the Jacobi fields along γ(s) which satisfy the above condition as

Z(s) = A(s) · Z∣∣
q
,

where
d2

ds2
A = −G ·A

and at q, A is the unit matrix and

d
ds
A = X.

We shall say that a point p on γ(s) is conjugate to H along γ(s) if there is a Jacobi
field along γ(s) not identically zero, which satisfies the initial conditions (29) at q
and vanishes at p. In other words, p is conjugate to H along γ(s) if and only if A is
singular at p. We may think of p as being a point where neighbouring geodesics normal
to H intersect. As before, A will be singular where and only where the expansion θ
becomes infinite. At q, the initial value of AT · ω · A will be zero as X is symmetric.
Thus AT · ω ·A will be zero everywere on γ(s). The initial value of θ will be Tr(X).

Lemma 2. If RabV aV b ≥ 0 and Tr (X) < 0, there will be a point conjugate to H
along γ(s) within a distance 3/− Tr (X) from H.

This may be proved using the Raychaudhuri equation as for Lemma 1.
We shall call a solution of the equation

d2

dv2

m

Z = −
m

R
4n4

n

Z (m,n = 1, 2), (30)
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along a null geodesic γ(v) a Jacobi field along γ(v). The components
m

Z should be
thought of as the components with respect to the basis E1 and E2 of a vector in the
screen space at each point. We shall say that p is the conjugate to q along the null
geodesic γ(v) if there is a Jacobi field along γ(v) not identically zero, which vanishes
at q and p. Representing the Jacobi fields along γ(v) which vanish at q by the 2 × 2
matrix Ã, so that

Z(s) = Ã · d
ds
Z

∣
∣∣
∣
q

,

we have as before
Ã

T · ω̃ · Ã = 0.

Also p will be conjugate to q along γ(s) if and only if

θ̃ =
(
det Ã

)−1 d
ds
(
det Ã

)

becomes infinite at p. Analogous to Lemma 1, we have:

Lemma 3. If RabKaKb ≥ 0 everywhere and if at some point γ(v1), v1 > 0, the
expansion θ̃ has the negative value θ̃1 < 0, then there will be a point conjugate to q
along γ(v) between γ(v1) and γ(v1 + 2/− θ1).

The expansion θ̃ of the matrix Ã obeys

d
dv
θ̃ = −RabKaKb − 2σ̃2 − 1

2
θ̃2. (31)

The proof is as for Lemma 1.
By the Einstein equations

RabK
aKb = TabK

aKb.

It seems reasonable to assume that this is also non-negative.
Similarly, we may also consider the null geodesics normal to a spacelike 2-surface

H̃ . By a spacelike 2-surface in an open set D of M , we mean the imbedded two-
dimensional submanifold of D defined by f1 = 0, f2 = 0, where f1 and f2 are C2

functions on D such that when f1 = 0, f2 = 0, then f1;a and f2;a are non-vanishing
and

(f1;a + μf2;a)(f1;b + μf2;b)gab = 0,

for some real value of μ. Then there will be two real values μ1 and μ2 which satisfy
the above equation. We shall define Ỹ

3

a
and Ỹ

4

a
to be the two null vectors normal to H̃

proportional to gab(f1;b + μ1f2;b) and gab(f1;b + μ2f2;b), respectively, and normalised
so that

Ỹ
3

a
Ỹ
4

b
gab = 1.

We may complete the pseudo-orthonormal basis by introducing two spacelike unit
vectors Ỹ

1

a
and Ỹ

2

a
orthogonal to each other and to Ỹ

3

a
and Ỹ

4

a
. Then we shall define

the two null second fundamental tensors of H̃ as

X̃
1
ab = −Ỹ

3
c,d

(
Ỹ
1

c
Ỹ
1
a + Ỹ

2

c
Ỹ
2
a

)(
Ỹ
1

d
Ỹ
1
b + Ỹ

2

d
Ỹ
2
b

)
,

and so on. X̃
1

and X̃
2

are then symmetric.
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There will be two families of null geodesics normal to H̃ , correspond to the two
null normals Ỹ

3
and Ỹ

4
. Consider the family whose tangent vector K equals Ỹ

4
at H̃ .

We may fix our pseudo-orthonormal basis E1, E2, E3, E4 by taking E1 = Ỹ
1
, etc., at

H̃ and parallel propagating along the null geodesics. The projection into the screen
space of the vector Z representing the separation of neighbouring null geodesics from
the null geodesic γ(v) will satisfy equation (30) and the initial conditions

d
dv
Z = X̃

2
· Z (32)

at q on γ(v) at H̃ . As before, the vorticity of these fields will be zero. The initial value
of the expansion θ̃ will be Tr

(
X̃
2

)
. Analogous to Lemma 2, we have

Lemma 4. If RabKaKb ≥ 0 everywhere and Tr
(
X̃
2

)
is negative, there will be a point

conjugate to H̃ along γ(v), within an affine distance 2/− Tr
(
X̃
2

)
from H̃.

The proof is as for Lemmas 2 and 3.
The significance of conjugate points will be seen in the next section.

4.4 Variation of arc length

By a broken timelike curve γ(t) from a point q = γ(0) to p = γ(tp), we shall mean
a connected, piecewise C3 curve from q to p such that, at every regular point, the
tangent vector (∂/∂t)γ is timelike and, at every singular point, the two tangent vectors
∂/∂t|− and ∂/∂t|+ are timelike and satisfy

g

(
∂

∂t

∣
∣
∣
∣
−
,
∂

∂t

∣
∣
∣
∣
+

)

> 0.

That is, they point into the same half of the null cone. We define the length of such
a curve as

L =
∑∫ √

g(∂/∂t, ∂/∂t)dt,

where the integrals are taken over the differentiable sections of the curve. If we choose
the parameter to be the arc length s, then g(∂/∂t, ∂/∂t) = 1 and we have

L =
∑∫

ds.

In a positive-definite metric, we may find the shortest curve between two points, but
in an indefinite, Lorentz metric, there will not be any shortest curve, as any timelike
curve can be deformed into a null curve of zero length. However, in certain cases there
will be a longest timelike curve between two points or between a point and a spacelike
3-surface.

Consider a spacelike 3-surface H in a normal coordinate neighbourhood U . By the
implicit function theorem, there will be an open neighbourhood W of H such that,
in W , the map

β : H × [0, ε] −→M

will be a diffeomorphism from some ε > 0, where β is defined by taking a point of
H a distance v ∈ [0, ε] along the geodesics normal to H . For constant v, the image
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β(H × v) will be a 3-surface. It will be orthogonal to V , the unit tangent vector to
the geodesics as a vector representing the separation of points equal distances along
neighbouring geodesics will remain orthogonal to V . Let p be a point of β(H × [0, ε])
such that every timelike curve from p to H remains in β

(
H × (0, ε)

)
. There will be a

geodesic normal to H through p. We shall show that this is the longest timelike curve
in U from p to H . Let γ(t) be such a curve. We may choose the parameter t to be
equal to v. Then the tangent vector (∂/∂t)γ can be expressed as V + Y , where Y is
some vector orthogonal to V . Hence,

g
(
(∂/∂t)γ , (∂/∂t)γ

)
= g(V, V ) + g(Y, Y ) ≤ 1,

the equality holding if and only if (∂/∂t)γ = V . Thus the length of γ(t) will be less
than or equal to the value of v at p, the equality holding if and only if γ(t) is a geodesic
curve normal to H .

A similar construction may be used to show that, in a normal coordinate neigh-
bourhood, a timelike geodesic curve is the longest broken timelike curve between
two points. To investigate whether the broken timelike curve γ(t) from q to p is the
longest such curve from q to p, we shall consider the change in its length under a
small variation. A variation α of γ(t) is a map

α : (−ε, ε)× [0, tp] −→M

such that:

1. α(0, t) = γ(t).
2. There is a subdivision 0 = t1 < t2 < . . . < tn = tp of [0, tp] such that α is C3 on

each (−ε, ε) × [ti, ti+1].
3. α(u, 0) = q, α(u, tp) = p.
4. For each constant u, α(u, t) is a broken timelike curve.

The vector (∂/∂u)α
∣
∣
u=0

will be called the variation vector Z. Conversely, given a
continuous, piecewise C2 vector field Z along γ(t), vanishing at q and p, we may
define a variation α for which Z will be the variation vector by

α(u, t) = expr
(
uZ
∣∣
r

)
,

where u ∈ (−ε, ε) for some ε > 0 and r = γ(t).

Lemma 5. The variation of the length from q to p under α is

∂L

∂u

∣
∣
∣
∣
u=0

= −
∑∫

g

(
∂

∂u
,

{
f−1 D

∂t

∂

∂t
− f−2 ∂f

∂t

∂

∂t

})
dt−

∑
g

(
∂

∂u
,

[
f−1 ∂

∂t

])
,

where f2 = g(∂/∂t, ∂/∂t) is the squared magnitude of the tangent vector and

[
f−1 ∂

∂t

]

is the discontinuity at one of the singular points of γ(t).
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We have

∂L

∂u

∣∣
∣
∣
u=0

=
∑ ∂

∂u

∫ √
g(∂/∂t, ∂/∂t)dt

=
∑∫

g

(
D
∂u

∂

∂t
,
∂

∂t

)
f−1dt

=
∑∫

g

(
D
∂t

∂

∂u
,
∂

∂t

)
f−1dt

=
∑∫ {

∂

∂t

(
g

(
∂

∂u
,
∂

∂t

))
f−1 − g

(
∂

∂u
,
D
∂t

∂

∂t

)
f−1

}
dt.

Integrating the first term by parts, we have the required formula.
We may simplify the formula by choosing the parameter t to be the arc length s.

Then g(∂/∂t, ∂/∂t) = 1. We shall call ∂/∂s the unit tangent vector V . We have

∂L

∂u

∣
∣
∣
∣
u=0

= −
∑∫

g(Z, V̇ )ds−
∑

g(Z, [V ]),

where V̇ = DV/∂s is the acceleration. From this we see that a necessary condition
for γ(t) to be the longest curve from q to p is that it should be an unbroken geodesic
curve, as otherwise we could choose a variation which would yield a longer curve.

We may also consider a curve γ(t) from a spacelike 3-surface to a point p. We define
a variation α of this curve as before, except that we replace condition (3) above by

3′. α(u, 0) lies on H and α(u, tp) = p.

Thus at H the variation vector Z = ∂/∂u lies in H .

Lemma 6.

∂L

∂u

∣
∣
∣
∣
u=0

= −
∑∫

g(V̇ , Z)ds−
∑

g(Z, [V ]) − g(Z, V )
∣
∣
s=0

.

The proof is as for Lemma 5. From this we see that a necessary condition for γ(t) to
be the longest curve from H to p is that it is an unbroken geodesic orthogonal to H .

We have seen that, under a variation α, the first derivative of the length of a
geodesic curve is zero. To proceed further, we shall calculate the second derivative.
We define a two-parameter variation α of a geodesic curve γ(t) from q to p as a C1

map
α : (−ε1, ε1) × (−ε2, ε2) × [0, tp] −→M,

with properties as before and

Z
1

=
(

∂

∂u1

)

α

∣∣
∣
∣

u1 = 0
u2 = 0

, Z
2

=
(

∂

∂u2

)

α

∣∣
∣
∣

u1 = 0
u2 = 0

,

as the two variation vectors. Conversely, given two continuous, piecewise C2 vector
fields Z

1
and Z

2
along γ(t), we may define a variation for which they will be the variation

vectors, by
α(u1, u2, t) = expr

(
u1Z

1
+ u2Z

2

)
, r = γ(t).
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Lemma 7. Under the two-parameter variation of the geodesic curve γ(t), the second
derivative of the length will be

∂2L

∂u2∂u1

∣
∣
∣
∣

u1 = 0
u2 = 0

= −
∑∫

g

(
Z
1
,

{
D2

∂s2

(
Z
2
− V g

(
V, Z

2

))
+R

(
V, Z

2

)
V

})
ds

−
∑

g

(
Z
1
,

{
D
∂s

(
Z
2
− V g

(
V, Z

2

))
})

.

By Lemma 5, we have

∂L

∂u1

∣
∣
∣
∣

u1 = 0
u2 = 0

= −
∑∫

g

(
∂

∂u
,

{
f−1 D

∂t

∂

∂t
− f−2∂f

∂t

∂

∂t

})
dt

−
∑

g

(
∂

∂u
,

[
f−1 ∂

∂t

])
.

Therefore,

∂2L

∂u2∂u1

∣∣
∣
∣

u1 = 0
u2 = 0

= −
∑∫

g

(
D
∂u2

∂

∂u1
,

{
f−1 D

∂t

∂

∂t
− f−2 ∂f

∂t

∂

∂t

})
dt

+
∑∫

g

(
∂

∂u1
,

{

f−2 ∂f

∂u2

D
dt

∂

∂t
− f−1 D

∂u2

D
∂t

∂

∂t
− 2f−3 ∂f

∂u2

∂f

∂t

∂

∂t

+ f−2 ∂2f

∂u2∂t

∂

∂t
+ f−2 ∂f

∂t

D
∂u2

∂

∂t

})

dt

−
∑

g

(
D
∂u2

∂

∂u1
,

[
f−1 ∂

∂t

])
−
∑

g

(
∂

∂u1
,

D
∂u2

[
f−1 ∂

∂t

])
.

The first and third terms vanish as γ(t) is an unbroken geodesic curve. In the second
term, we can write

D
∂u2

D
∂t

∂

∂t
= R

(
∂

∂t
,
∂

∂u2

)
∂

∂t
+

D
∂t

D
∂u2

∂

∂t

and

∂2f

∂u2∂t
=

∂

∂t

{
f−1g

(
D
∂u2

∂

∂t
,
∂

∂t

)}

=
∂

∂t

{
f−1 ∂

∂t

(
g

(
∂

∂u2
,
∂

∂t

))
− f−1g

(
∂

∂u2
,
D
∂t

∂

∂t

)}
.

In the fourth term,

D
∂u2

[
f−1 ∂

∂t

]
=
[
f−1 D

∂t

∂

∂u2
− f−3g

(
D
∂t

∂

∂u2
,
∂

∂t

)
∂

∂t

]
.

Then taking t to be the arc length s, we obtain the required result.
Although it is not immediately obvious from the appearance of the expression,

we know from its definition that it is symmetric in the two variation vector fields Z
1
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and Z
2
. We see that it only depends on the projections of Z

1
and Z

2
into the space

orthogonal to V . Thus we can confine our attention to variations α whose variation
vectors are orthogonal to V . We shall define Tγ to be the (infinite-dimensional) vector
space consisting of all continuous, piecewise C2 vector fields along γ(t) orthogonal to
V and vanishing at q and p. Then ∂2L/∂u2∂u1 will be a symmetric map of Tγ × Tγ
to R

1. We may think of it as a symmetric tensor on Tγ and write it as

L
(
Z
1
, Z

2

)
=

∂2L

∂u2∂u1

∣
∣
∣
∣

u1 = 0
u2 = 0

, Z
1
, Z

2
∈ Tγ .

We may also calculate the second derivative of the length from H to p of a geodesic
curve γ(t) normal to H . We proceed as before, except that one end point of γ(t) is
allowed to vary over H instead of being fixed.

Lemma 8. The second derivative of the length of γ(t) from H to p is

∂2L

∂u2∂u1

∣
∣
∣
∣

u1 = 0
u2 = 0

= −
∑∫

g

(
Z
1
,

{
D2

∂s2
Z
2

+R
(
V, Z

2

)
V

})
ds

−
∑

g

(
Z
1
,

[
D
∂s
Z
2

])
− g

(
Z
1
,

D
∂s
Z
2

)∣∣
∣
∣
H

+X
(
Z
1
, Z

2

)
,

where Z
1

and Z
2

have been taken orthogonal to V and X
(
Z
1
, Z

2

)
is the second funda-

mental tensor of H . The first two terms are as for Lemma 7. The extra terms are

− D
∂u2

g

(
∂

∂u1
, f−1 ∂

∂t

)∣∣
∣
∣
H

= −f−1 g

(
D
∂u2

∂

∂u1
,
∂

∂t

)∣∣
∣
∣
H

+ f−3 g

(
D
∂u2

∂

∂t
,
∂

∂t

)
g

(
∂

∂u1
,
∂

∂t

)∣∣
∣
∣
H

− f−1 g

(
∂

∂u1
,
D
∂t

∂

∂u2

)∣∣
∣
∣
H

.

The second term vanishes as ∂/∂u1 is orthogonal to ∂/∂t. If we take t to be the arc
length, then ∂/∂t will be equal to the unit normal Y at H . Since the end point of
γ(t) is restricted to varying over H , ∂/∂u1 will always be orthogonal to Y . Thus

g

(
D
∂u2

∂

∂u1
, Y

)
=

D
∂u2

g

(
∂

∂u1
, Y

)
− g

(
∂

∂u1
,

D
∂u2

Y

)

= X

(
∂

∂u1
,
∂

∂u2

)
.

We shall say that a timelike geodesic curve γ(t) from q to p is maximal if L
(
Z
1
, Z

2

)

is negative-definite. In other words, γ(t) is maximal if all small variations α yield a
shorter curve from q to p. Similarly, we shall say that a timelike geodesic curve from
H to p, normal to H , is maximal if all small variations yield a shorter curve from H
to p.

Lemma 9. A timelike geodesic curve γ(t) from q to p is maximal if there is no point
conjugate to q along γ(t) in [q, p].
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We wish to show that L(Z,Z) < 0 for any non-vanishing Z ∈ Tγ . Adopting matrix
notation, Z will be zero at q and p, while the matrix A representing the Jacobi fields
which vanish at q will be zero at q, but non-singular elsewhere in [q, p]. Thus we may
express Z as

Z = A · b, where b = A−1 · Z.
Note that b will vanish at p. Then

L(Z,Z) = −
∑∫

bT ·AT ·
{

d2

ds2
(A · b) +G · A · b

}
ds−

∑
bT · AT ·

[
d
ds

(A · b)
]

= −
∑∫

bT ·AT ·
{

2
d
ds
A · d

ds
b+A · d2

ds2
b

}
ds−

∑
bT · AT ·A ·

[
d
ds
b

]

=
∑∫ {

dbT

ds
· AT ·A · db

ds
+ bT ·

(
dAT

ds
· A−AT · dA

ds

)
db
ds

}

ds.

But
dAT

ds
·A−AT · dA

ds
= −AT · ω · A = 0,

so

L(Z,Z) =
∑∫

dbT

ds
·AT · A · db

ds
ds.

But
dbT

ds
· AT · A · db

ds
=
(
A · db

ds

)T

·
(
A · db

ds

)
≤ 0,

because of the signature of the metric, and db/ds must be nonzero somewhere if Z is
not identically zero. Thus L(Z,Z) < 0.

Lemma 10. A timelike geodesic curve γ(t) from q to p is not maximal if there is a
point r between q and p conjugate to q along γ(t).

Let b be the Jacobi field along γ(t) which vanishes at q and r. Let c ∈ Tγ be such that

cT · db
ds

= 1,

at r. Extend b to p by putting it zero in rp. Let Z be

Z = εc+ ε−1b,

where ε is some constant. Then,

L(Z,Z) = ε2L(c, c) + 2L(c, b) + 2ε−2L(b, b)

= ε2L(c, c) + 2.

Thus by taking ε small enough, L(Z,Z) may be made positive.
We may obtain similar results for the case of a timelike geodesic curve γ(t) normal

to H .

Lemma 11. A timelike geodesic curve γ(t) normal to H from H to p is maximal if
there is no point conjugate to H in [H, p].

Lemma 12. It is not maximal if there is a point r between H and p conjugate to H
along γ(t).
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The proofs are as for Lemmas 9 and 10.
We shall consider variations of a broken null curve γ(t) from q to p. The definition

of a broken null curve is the same as that for a broken timelike curve except that the
tangent vector (∂/∂t)γ is required to be null everywhere. We shall be interested in
the circumstance under which it is possible to find a variation α of γ(t) which makes
g(∂/∂t, ∂/∂t) positive everywhere or, in other words, yields a timelike curve from q
to p. To decide these it would not be convenient to study the behaviour of L under a
small variation since

√
g(∂/∂t, ∂/∂t) will not be differentiable when g(∂/∂t, ∂/∂t) = 0.

Instead we shall consider the variation in

Λ =
∑∫

g

(
∂

∂t
,
∂

∂t

)
dt.

Clearly, a necessary but not sufficient condition that a variation α of γ(t) should yield
a timelike curve from q to p is that Λ should become positive.

Under a variation α,

∂

∂u

(
g

(
∂

∂t
,
∂

∂t

))
= 2g

(
D
∂u

∂

∂t
,
∂

∂t

)
= 2g

(
D
∂t

∂

∂u
,
∂

∂t

)

= 2
∂

∂t

(
g

(
∂

∂u
,
∂

∂t

))
− 2g

(
∂

∂u
,
D
∂t

∂

∂t

)
.

In order to obtain a timelike curve from q to p, we require this to be greater than or
equal to zero everywhere on γ(t). If γ(t) is an unbroken geodesic curve, we may take
t to be equal to an affine parameter v. Then

D
∂t

∂

∂t
= 0 and

∂Λ

∂u

∣
∣
∣∣
u=0

= 0.

We see also that the variation vector ∂/∂u|u=0 must be orthogonal to the tangent
vector ∂/∂t everywhere on γ(t), otherwise

∂

∂t

(
g

(
∂

∂u
,
∂

∂t

))

would be negative somewhere on γ(t). On the other hand, if γ(t) is not an unbroken
geodesic curve, it is not difficult to see that we could define a variation α which would
have

∂

∂u

(
g

(
∂

∂t
,
∂

∂t

))

positive everywhere on γ(t). Thus if q and p are joined by a null curve which is not
an unbroken geodesic, they can also be joined by a timelike curve.

We shall now consider a two-parameter variation α of an unbroken null geodesic
curve γ(t) from q to p. The variation α will be defined as before except that, for the
reason given above, we shall restrict ourselves to variations whose variation vectors

∂2
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∂t2
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+R

(
∂
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,
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∂u2

)
∂

∂t

})
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and

∂2Λ

∂u2∂u1

∣
∣
∣∣

u1 = 0
u2 = 0

= −
∑∫

g

(
∂

∂u1
,

{
D2

∂t2
∂

∂u2
+R

(
∂

∂t
,
∂

∂u2

)
∂

∂t

})
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−
∑

g

(
∂

∂u1
,

[
D
∂t

∂

∂u2

])
.

This formula is very similar to that for the variation of the length of a timelike curve.
It can be seen that the variation of Λ is zero for a variation vector proportional to
the tangent vector ∂/∂t, since ∂/∂t is null and

R

(
∂

∂t
,
∂

∂t

)
∂

∂t
= 0,

as the Riemann tensor is antisymmetric. Such a variation would be equivalent to
simply reparametrizing γ(t). Thus if we want a variation which will give a timelike
curve, we need consider only the projection of the variation vector into the screen
space at each point of γ(t). In other words, if we introduce a pseudo-orthonormal
basis E1, E2, E3, E4 along γ(t) with E4 = ∂/∂t, the variation of Λ will depend only
on the components Z

m
of the variation vector. Then we have:

Lemma 13. If there is no point in [q, p] conjugate to q along γ(t), then ∂2Λ/∂u2|u=0

will be negative for any variation α of γ(t) whose variation vector ∂/∂u|u=0 is orthog-
onal to the tangent vector ∂/∂t on γ(t) and is not everywhere zero or proportional
to ∂/∂t. In other words, if there is no point in [q, p] conjugate to q, then there is no
small variation of γ(t) which gives a timelike curve from q to p.

The proof is similar to that for Lemma 9, using instead the 2 × 2 matrix Ã of
Section 4.2.

Lemma 14. If there is a point r between q and p conjugate to q along γ(t), then
there will be a variation of γ(t) which will give a timelike curve from q to p.

The proof is a bit finicky, since we have to show that the tangent vector becomes
timelike everywhere.

Let Z be the screen components of the Jacobi field along γ(t) which vanishes at q
and r. It obeys

d2

dt2
Z = −G̃ · Z,

where for convenience we have taken t to be equal to an affine parameter. We may
write Z as

Z = |Z|Ẑ,
where Ẑ is a unit vector. We shall take |Z| and Ẑ to be continuous at r. Then,

Ẑ
d2

dt2
|Z| + 2

dẐ
dt

d|Z|
dt

+ |Z|d
2Ẑ

dt2
= −G̃ · Ẑ|Z|.

Multiplying by Ẑ
T
,

d2

dt2
|Z| + f |Z| = 0,

where

f = Ẑ
T · d2Ẑ

dt2
+ Ẑ

T · G̃ · Ẑ.
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Let p′ be a point of γ(t) between r and p such that Z is not zero in (r, p′]. Let f ′ be
the greatest lower bound of f in rp′. Let a > 0 be such that

a2 + f ′ > 0 and b = − |Z|
eat − 1

∣∣
∣
∣
p′
.

Then the field Z ′ given by

Z ′ =
[
b(eat − 1) + |Z|]Ẑ

will vanish at q and p′ and satisfy

Z ′T ·
(

d2

dt2
Z′ + G̃ · Z ′

)
> 0

in (q, p′). We shall choose a variation α′ of γ(t) from q to p′ such that the screen
components of its variation vector ∂/∂u|u=0 equal Z ′ and such that

g

(
D
∂u

∂

∂u
,
∂

∂t

)∣∣
∣
∣
u=0

+ g

(
∂

∂u
,
D
∂t

∂

∂u

)∣∣
∣
∣
u=0

=

⎧
⎪⎪⎨

⎪⎪⎩

εt, 0 ≤ t ≤ 1
4 tp

′,

ε
(

1
2 tp

′ − t
)

1
4 tp

′ < t < 3
4 tp

′,

ε(t− tp′) 3
4 tp

′ ≤ t ≤ tp′,

where tp′ is the value of t at p′ and ε > 0 but less than the least value of

Z ′T ·
(

d2

dt2
Z′ + G̃ · Z ′

)

in the range tp′/4 ≤ t ≤ 3tp′/4. Then the variation α will give a timelike curve from
q to p′. If we join this curve to the section of γ(t) from p′ to p, we will have a non-
spacelike curve from q to p which is not an unbroken null geodesic. Thus there will
be a variation of this curve which gives a timelike curve from q to p.

Lemma 15. If γ(t) is an unbroken null geodesic curve normal to H̃ from H̃ to p,
and if there is no point conjugate to H̃ along γ in [H̃, p], then no small variation of
γ(t) can give a timelike curve from H̃ to p.

Lemma 16. If there is a point conjugate to H̃ along γ(t) between H̃ and p, then
there is a variation which gives a timelike curve from H̃ to p.

The proofs are similar to those of the previous lemmas. These results will be of great
importance in Section 6.

5 Horizons and causality

5.1 Conformal geometry

By the conformal geometry of spacetime, we shall mean the set of all Lorentz metrics
g̃(X,Y ) on M conformal to the physical Lorentz metric g(X,Y ), i.e.,

g̃(X,Y ) = Ω2g(X,Y ),

where Ω > 0 is a C3 function on M . Clearly, the division of vectors into timelike,
spacelike, and null is a property of the conformal geometry. Thus all causal relations
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on M are properties of the conformal geometry. Conversely, as we saw in Section 3,
local causal relations determine the metric up to a conformal factor. All the properties
of causal relations which will be considered in this section are thus also properties of
the conformal geometry.

We saw in Section 2 that, if g̃ = Ω2g, then C̃abcd = Cabcd, these being the
components of the Weyl tensor. Thus the Weyl tensor is a property of the conformal
geometry. On the other hand, we have

R̃ab = Rab − Ω−2
(
2ΩΩ;ab + gabg

cdΩΩ;cd − 4Ω;aΩ;b

)
,

so the Ricci tensor is not a property of the conformal geometry. This means that
the metric g̃ will not in general satisfy the Einstein equations. If γ(t) is a curve with
tangent vector K = (∂/∂t)γ , then

D̃
∂t
Ka =

D
∂t
Ka + 2Ω−1Ω;bK

bKa −Ω−1KbKcgbcΩ;dg
ad.

If the curve is geodesic with respect to the metric g, we have

K [b D
∂t
Ka] = 0.

It can be seen that the curve will not in general also be geodesic with respect to the
metric g̃ unless K is null. Thus being a null geodesic curve is a conformal property.
The affine parameter on a null geodesic will in general be different in the metric g̃.
Thus completeness (whether a geodesic can be extended to arbitrary values of the
affine parameter) will not in general be a conformal property though we shall see
later a special case in which it is. Since null geodesic curves are properties of the
conformal geometry, the projection into the screen space of a Jacobi field along a null
geodesic and the relation of being conjugate points along a null geodesic curve will
also be conformal properties.

5.2 Time orientability

In our own neighbourhood, there is a clear division of non-spacelike vectors into
future- and past-directed. However, it is not so obvious that we could extend this to
give a continuous division at all points of M . This problem has been dealt with by
Markus [Markus 1955]: as there is a Lorentz metric on M , we can find a continuous
line-element field (X,−X), where X is a timelike vector. The manifold M̃ is defined
as the set of all pairs (p,X |p) and (p,−X |p) with the natural structure. Clearly, M̃
covers M twice. There are two possibilities: either M̃ is connected, in which case it is
impossible to introduce a continuous division into future- and past-directed vectors in
M , but one exists in M̃ , or M̃ consists of two disconnected components, in which case
one can find a continuous division in M . Physically it would seem very reasonable to
expect M to be time orientable, but even if it was not, we could apply all the following
theorems to the time orientable covering manifold M̃ . In particular, if we can prove
the occurrence of a singularity in M̃ , this will imply the existence of one in M .

Similarly, we could ask whether it was possible to assign continuously right- and
left-handed orientations of frames of spacelike vectors. As before, if it is not possible,
there will be a doubly covering manifold in which it is possible. However, there is
no such compelling physical reason for thinking that M is space orientable. If it were
not, it would be possible globally to distinguish between neutrinos and anti-neutrinos,
and it would raise the intriguing possibility that a right-handed space traveller might
return home left-handed.
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5.3 Horizons

As was stated in the last section, we shall assume either that M is time orientable or
that we are considering the time orientable manifold M̃ . We introduce the following
notation which has been suggested by Kronheimer and Penrose [Kronheimer 1967]
and Carter (private communication). A point p is said to causally precede q, denoted
by p < q, if there is a non-spacelike curve from p to q whose tangent vector is future-
directed or if p = q. The set of all points which causally precede q will be denoted by
(q > and the set of all points which q causally precedes will be denoted by < q). The
abbreviation 〈p, q〉 will be used for < p)∩(q >. A point p will be said to chronologically
precede q, denoted p� q, if there is a future-directed timelike curve from p to q. The
sets (q �, � q), and 〈〈p, q〉〉 are defined similarly. As any timelike curve from q to r
can be deformed into a timelike curve from q to some neighbourhood of r, these will
be open sets.

A point p is said to precede q in the sense of the horismos, denoted by p−−>−q, if
p < q but not p� q. The sets −−>−q), (q−−>−, and −−>−p, q−−>− are defined similarly. The
relations <, �, and −−>− satisfy the following conditions:

1. p� q =⇒ p < q .
2. p < q and q < r =⇒ p < r .
3. p < q and q � r or p� q and q < r =⇒ p� r .

The last property may be proved by considering a variation of the curve from p to
q and r. We have as a direct result that, if p < q < r and p−−>−r, then p−−>−q−−>−r.
If λ was a non-spacelike curve from p to q which was not a null geodesic curve, we
could find a varation of λ which gave a timelike curve from p to q. Thus if p−−>−q, q
must lie on a future-directed null geodesic curve through p, though the converse is
not necessarily true.

If N is a submanifold of M , we denote by
N
<,

N�, and
N−−>− the causal relations on

N as a manifold with the metric induced from M , so that p
N
< q if and only if p = q

or there is a future-directed non-spacelike curve in N from p to q, and so on. These
relations may not agree with the causal relations of M restricted to N . If u1, u2, u3, u4

are normal coordinates in a neighbourhood U of q, with ∂/∂u4 future-directed, it is

easy to see that
U
< q) and

U� q) consist of points whose coordinates satisfy
(
u4
)2 − (u1

)2 − (u2
)2 − (u3

)2 ≥ 0, u4 ≥ 0,

and the strict inequality, respectively. The boundary in U of these sets is formed by the
points whose coordinates satisfy the above equality. They lie on the future-directed
null geodesics through q.

To derive properties of the boundaries of more general sets, we shall use the
following lemmas. We denote the boundary in M of a set S by Ṡ = S ∩ (M − S),
where a bar denotes closure.

Lemma 17. If a set N is such that p ∈ N implies (p � ⊂ N , and if M −N is not
empty, then Ṅ is a closed, three-dimensional C0 submanifold and there are no two
points q, r ∈ Ṅ such that q � r.

If q ∈ Ṅ , any open neighbourhood of q intersects N and M − N . If p � q, then
there is an open neighbourhood of q in � p). Thus (q � ⊂ N . Similarly, � q) ⊂
M − N . If r � q, then there would be an open neighbourhood V of r such that
V ⊂ � q) ⊂ M − N . Thus r could not belong to Ṅ . We may introduce normal
coordinates u1

α, u
2
α, u

3
α, u

4
α in an open neighbourhood Uα of q, with ∂/∂u4

α timelike,
such that the curves uiα = const. (i = 1, 2, 3) intersect � q) and (q �. Then each
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of these curves contains precisely one point of Ṅ . The u4
α coordinates of these points

are continuous since no two points of Ṅ have timelike separation. Then the bijection
φα : Ṅ ∩ Uα → R

3 defined by φα(q) = ui(q) for q ∈ Ṅ ∩ Uα is a homeomorphism.
Thus, {Ṅ ∩ Uα, φα} is a C0 atlas for Ṅ .

We shall call a boundary with the properties of Ṅ above a non-timelike horizon.

Lemma 18. If N satisfies the conditions of the previous lemma and if for a point
q ∈ Ṅ there is a normal coordinate neighbourhood U of q and a ball B ⊂ U of constant
coordinate radius about q which contains a sequence of points rn converging on q such
that there is a future-directed non-spacelike curve λn from each rn which intersects
(Ḃ ∩N), then Ṅ contains a future-directed null geodesic segment from q.

The author is indebted to Dr R. Penrose for the following proof. Let p be a limit point
of λn ∩ (Ḃ ∩N). Then p ∈ Ṅ and so is not contained in � q). Select a subsequence
r′n such that λ′n ∩ (Ḃ ∩N) converges to p. If V is any open neighbourhood of p, all

r′n for n large enough are contained in (V
U�. Thus q ∈ (V

U� and p ∈ U� q). But

U� q) =
U
< q).

Therefore, q−−>−p. Any neighbourhood of p must intersect M − N . Thus p ∈ Ṅ .
Moreover, if y is any point such that q−−>−y−−>−p, then y ∈ Ṅ . This shows that the
future-directed null geodesic segment from q to p lies in Ṅ .

Corollary 1. If there is a past-directed null geodesic segment from q in Ṅ , this must
be a continuation of the future-directed null geodesic from q, since if it were in any
other direction, we would have points of Ṅ which were joined by a broken null geodesic
curve and which could therefore be joined by a timelike curve. If there is more than
one future-directed null geodesic segment from q in Ṅ , there can be no past-directed
such segment from q in Ṅ .

The above lemmas have duals in which future and past are interchanged. We shall
regard such dual results as self-evident.

We shall say that a non-timelike horizon is null wherever the conditions laid down
in Lemma 18 are satisfied. For example, consider the boundary of the chronological
past of a point p. As (p� satisfies the conditions of Lemma 17, its boundary will be
a non-timelike horizon, provided that M − (p � is not empty. It is easy to see that
the conditions of Lemma 18 would be satisfied at each point of ˙(p�, except at the
point p itself, if it lay on ˙(p� (it need not: there might be a past-directed timelike
curve from p which returned to p). Thus ˙(p� would be null everywhere except at p.
It would be generated by null geodesic segments which would have a past end point if
they intersected another generating segment, but which could have a future end point
only at p. There might be generating segments of ˙(p� which did not pass through p.
These could have no future end point. If there were a point r conjugate to p along a
past-directed null geodesic λ from p, then all points on λ beyond r would be in (p�,
by Lemma 14. Thus if some segment of λ lay in ˙(p�, it would have a past end point
before or at r.

All points q such that q−−>−p will lie on the boundary of (p �, since any point
r � q will be in (p�. However, such points may not comprise the whole of (p�. We
shall say that a region S of M is causally simple if for every compact set V contained
in S the intersections with S of � V̇ ) and (V̇ � consist entirely of points q such that
V −−>−q and q−−>−V , respectively. An equivalent statement is that every null geodesic
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Fig. 8. An example of a space which is not causally simple.

generating segment of � V̇ ) and (V̇ � which intersects S has a past or future end
point, respectively, at V .

The set (p > consists of (p� and (p−−>−. Thus it has the same boundary as (p�.
It can be seen that a region S is causally simple if and only if S ∩ (V > and S∩ < V )
are closed in S.

All the examples given in Section 3 are causally simple. Thus it would seem a
fairly natural property. However, one can construct examples of spaces which are not
causally simple (see Fig. 8).

Another example of a horizon would be the absolute event horizon of a point p
[Rindler 1956]. This may be defined as the boundary of that region of spacetime in
which no observer could ever learn about events at p. In other words, it would be the
boundary of the set of points whose causal futures did not intersect the causal future
of p, or equivalently, the boundary of the causal past of the causal future of p. It is
easy to see that this set satisfies the condition of Lemma 17 and that the conditions
of Lemma 18 are satisfied at each point of the boundary. Thus if the absolute event
horizon of p exists, it will be generated by null geodesic segments which will have a
past end point if they intersect another generating segment, but which can have no
future end point.

It can be see from the Penrose diagram in Section 3 that there are no absolute
event horizons in Minkowski space, as the boundary of its diagram is null. On the
other hand, the diagram of de Sitter space has a spacelike boundary, so any point will
have an absolute event horizon.

The dual of an event horizon is sometimes called a particle horizon [Penrose 1963,
Rindler 1956]. The existence of such a horizon implies that an observer cannot see all
the particles in the universe (see Fig. 9). Particle horizons occur in the Friedmann
models filled with normal matter, as their diagrams all have spacelike boundaries at
the initial singularity.

5.4 Causality

There was a young lady of Wight
Who travelled much faster than light.
She departed one day,
In a relative way,
And arrived on the previous night.
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Fig. 9. Examples of event and particle horizons when the Penrose diagram of M has a
spacelike boundary [Penrose 1963].

Fig. 10. Example where the Alexandroff topology is smaller than the manifold topology. In
this case, the only open set is M itself.

There is a common type of science fiction story in which the hero travels into the
past and accidentally kills one of his ancestors, or commits some other chronoclasmic
act. The logical contradictions which arise from such stories would seem to be strong
evidence for believing that such behaviour is impossible. Even if to travel into one’s
past involved going right round the universe, one would feel that this was a matter of
principle and should not depend on the practical difficulties of constructing suitable
spaceships. It would therefore seem reasonable to adopt:

The chronology assumption. There are no closed timelike curves. Equiva-
lent statements are that � p) ∩ (p � is empty or that there are no points q
for which q � q.

Following Kronheimer and Penrose [Kronheimer 1967], we shall define the Alexandroff
topology of M as that defined by the basis consisting of all sets of the form 〈〈p, q〉〉,
for p, q ∈ M . As 〈〈p, q〉〉 is open in the manifold topology, the Alexandroff topology
is not larger (finer) than the manifold topology. In fact, Figure 10 shows that it may
be smaller. If we adopt the chronology assumption, M cannot be covered by a finite
number of sets of the form 〈〈p, q〉〉, as 〈〈p, q〉〉 does not contain p. Thus M cannot
be compact with respect to the Alexandroff topology or with respect to the manifold
topology, as this is larger. This would seem to indicate that a compact manifold would
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not be a physically realistic model for spacetime. In a sense this is a pity because there
are a number of techniques such as harmonic analysis which can be applied effectively
only to compact manifolds.

In order to get a deeper insight into the physical significance of chronology, it may
be useful to consider how violations of it could occur. The following result is due to
Carter. Let Q be the set of points of M at which chronology is violated. That is, from
each point q ∈ Q, there is a timelike curve which returns to q. Then Q is the union
of disjoint sets of the form 〈〈q1, q1〉〉, 〈〈q2, q2〉〉, and so on, where q1, q2, . . . ∈ Q.

Let q1 ∈ Q and λ1 be a timelike curve with past and future end points at q1.
Then 〈〈q1, q1〉〉 is non-empty and is contained in Q, for if p ∈ 〈〈q1, q1〉〉, then p can
be joined to q by future- and past-directed timelike curves μ and μ, and μ ◦ λ1 ◦ μ−1

is a future-directed timelike curve from p which returns to p. Thus p ∈ Q. Moreover,
if p ∈ 〈〈q1, q1〉〉 ∩ 〈〈q2, q2〉〉, then q2 ∈ 〈〈q1, q1〉〉 and 〈〈q1, q1〉〉 = 〈〈q2, q2〉〉. This shows
that Q is the union of disjoint sets of the form 〈〈q1, q1〉〉, etc.

We shall call the boundary of Q a chronology horizon. It is easy to see that the
boundary of each disjoint component 〈〈q1, q1〉〉 of Q consists of two parts: one of which
forms part of the boundary of 〈〈q1) and the other, part of the boundary of (q1〉〉. As
the boundary of 〈〈q1) cannot contain q1, it will be generated by null geodesic segments
which have no past end point. Similarly, the boundary of (q1〉〉 will be generated by null
geodesic segments which have no future end points. Thus the chronology horizon, the
boundary of 〈〈q1, q1〉〉, will consist of two parts: the future (past) part being generated
by null geodesic segments that have no future (past) end points. The two parts may
or may not be connected.

Carter has pointed out that a chronology horizon occurs in the Kerr rotating
solution [Boyer 1967]. This raises grave doubts as to whether it can be regarded as a
physically realistic solution.

As well as making the chronology assumption, we could adopt:

The causality assumption. There are no closed non-spacelike curves. An
equivalent statement is that 〈p, p〉 = p for any p ∈M .

This is slightly stronger than the chronology assumption. Nevertheless, it would still
seem a very reasonable requirement.

As before, we have the result that the set Q on which causality is violated will
be the union of disjoint sets of the form 〈q1, q1〉, etc. Suppose that the chronology
assumption held. Then each set 〈q1, q1〉 would consist of a single closed null geodesic
curve, as any closed non-spacelike curve which was not a null geodesic curve could
be deformed to give a closed timelike curve. We mentioned in Section 5.1 that com-
pleteness of a null geodesic curve was not in general a conformal property. However,
it is in the case of a closed null geodesic curve. For the affine parameter ṽ in a metric
g̃ = Ω2g̃ is related to the affine parameter v in the metric g by

dṽ
dv

= Ω2.

The conformal factorΩ will have an upper and lower bound on the closed null geodesic
curve. Thus arbitrary values of the parameter ṽ will be attained if and only if arbitrary
values of v are. Let v1, v2, . . . , be successive values of v at q. The tangent vector at q,
viz.,

∂

∂v

∣∣
∣
∣
v=v1

,

will be parallel to the tangent vector

∂

∂v

∣∣
∣
∣
v=v2

.
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Thus
∂

∂v

∣
∣
∣∣
v=v1

= a−1 ∂

∂v

∣
∣
∣∣
v=v2

= a−2 ∂

∂v

∣
∣
∣∣
v=v3

,

and so on, where a is some constant and

v2 − v1 = a(v3 − v2) = a2(v4 − v3),

and so on. If a < 1, v will never attain the value of

v2 − (v2 − v1)(1 − a)−1,

and if a > 1, v will not attain the value of

v1 + (v2 − v1)
(

1 − 1
a

)−1

.

Thus the closed null geodesic curve is complete if and only if a = 1. The Misner space
described in Section 3 contains closed null geodesic curves for which a 
= 1.

Consider for a moment the physical metric g. Suppose that the energy-momentum
tensor satisfied the inequality TabW aW b ≥ 0 for any non-spacelike vectorW and that,
in some region of a point q on a closed null geodesic λ(v), the energy-momentum tensor
satisfied the strict inequality TabW aW b > 0 (this could be interpreted physically as
meaning that there was some matter at q). Let E1, E2, E3, E4 be a pseudo-orthonormal
tetrad parallel transported along λ(v) and let Zm (m = 1, 2) be variation vectors along
λ(v) defined by

Zm = Em cos
πv

�
,

where � is some constant. Let Λ be

Λ =
∫ �/2

−�/2
g

(
∂

∂v
,
∂

∂v

)
dv.

Then using the formula derived in Section 4, the variation in Λ induced by the vari-
ation vector Zm is

Λ(Zm, Zm) = −2
∫ �/2

−�/2
g

(
Zm,

{
D2Zm
∂v2

+R

(
∂

∂v
, Zm

)
∂

∂v

})
dv.

But ∑

m

g
(
Em, R(E4, Em)E4

)
= −R(E4, E4).

Therefore,

∑

m

Λ(Zm, Zm) = −3�−1 + 2
∫ �/2

−�/2
R(E4, E4) cos2

πv

�
dv.

But by the Einstein equations, R(E4, E4) ≥ 0, and it is strictly positive in some
neighbourhood of q. Thus by taking � greater than some value �, it follows that the
quantity

∑
m Λ(Zm, Zm) will be positive. This shows that there would be a point

conjugate to r1 = λ(−�/2) before r2 = λ(�/2), and there would be a variation of
λ(v) between r1 and r2 which would give a timelike curve between r1 and r2. There
are two possibilities: either the null geodesic λ(v) is not complete and v does not
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Fig. 11. Example of a space in which the causality but not the strong causality assumption
holds. There is no small open neighbourhood of p that does not intersect some timelike curve
more than once.

attain one of the values −�/2 and �/2, or there is also a violation of chronology. In
general, if we assumed that every null geodesic encountered some matter somewhere
along its length, then a violation of causality would imply either that there existed
incomplete null geodesics or that there was also a violation of chronology. This would
be an additional reason for regarding the causality assumption as essential on physical
grounds.

As well as making the chronology and causality assumptions, it would seem rea-
sonable to exclude the possibility of almost closed non-spacelike curves. In fact, Carter
(private communication) has pointed out that there is an infinite hierarchy of such
assumptions. However, for our purposes it will be sufficient to consider only what we
shall call:

The strong causality assumption. Every open neighbourhood of each point
p ∈ M contains an open neighbourhood D such that no non-spacelike curve
intersects D more than once. An equivalent statement in terms of causal rela-
tions alone has been given by Kronheimer and Penrose [Kronheimer 1967]: if
p1 and p2 are such that every q1 � p1 causally precedes every q2 � p2 and if
p2 < p1, then p2 = p1.

The equivalent statement is proven as follows. Suppose p2 
= p1. If V1 and V2 were any
two open neighbourhoods of p1 and p2, respectively, there would be a past-directed
non-spacelike curve from V2 to V1. If V1 were taken sufficiently small, this curve could
be extended to intersect V2 again.

Figure 11 shows a pathological example where the causality assumption holds but
not the strong causality assumption. However, it can be seen that, if the strong causal-
ity assumption did not hold, M would be on the verge of violating the chronology
assumption. That is to say, the slightest disturbance of the metric (by quantum fluc-
tuations, for instance) coud lead to the existence of closed timelike curves. It would
not seem realistic to suppose that spacetime could judge as accurately as that to avoid
a violation of chronology. Thus it would seem physically reasonable to assume strong
causality.
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Suppose that the causality assumption held but that strong causality was violated
at some point p. Let U be a normal coordinate neighbourhood of p and B ⊂ U a ball
of constant coordinate radius aout p. Let Vn ⊂ B be a series of open neighbourhoods
of p such that, if W is any open neighbourhood of p, then W contains all Vn for n
greater than some value. For each Vn, there will be a future-directed non-spacelike
curve λn which leaves B and returns to Vn. Let r1 be a limit point of where the λn
intersect Ḃ for the first time. Then r1 ∈< p), but not of � p), since otherwise we
could obtain a closed non-spacelike curve. Thus p−−>−r1. Choose a subsequence λ′n
which converges to r1. Let r2 be a limit point of where the λ′n intersect Ḃ for the
second time. Then r2−−>−p. Moreover, r2 cannot be in (r1 �. Thus r2, p, and r1 lie
on a null geodesic. Each point of the null geodesic segment r2r1 will be a limit point
of λ′n. But then all points of the null geodesic must be limit points of λ′n, since if
q was the last point on the geodesic which was a limit point, a similar construction
about q could be used to show that there were limit points beyond q. As the causality
assumption holds, no two points on the null geodesic could be joined by a timelike
curve.

If the energy-momentum tensor obeyed the inequality TabW aW b ≥ 0 for any non-
spacelike vector W , and if every null geodesic encountered some matter (somewhere
where the strict inequality was satisfied), then the above result shows that a violation
of strong causality would imply either that M was geodesically incomplete or that
there was also a violation of chronology. This would be a further ground for thinking
that the strong causality assumption is physically reasonable.

Let U be a normal coordinate neighbourhood of p and D ⊂ U an open neigh-
bourhood of p such that no non-spacelike curve intersects D more than once. Causal
relations on D as a submanifold will coincide with the causal relations on M restricted
to D (we shall call D a local causality neighbourhood). Thus the Alexandroff topology
will agree with the manifold topology on D. If the strong causality assumption holds,
M can be covered by the neighbourhoods D and the two topologies will be identi-
cal everywhere. This shows that the topological structure of M could be determined
physically by observation of causal relationships. One would like to use these relations
to determine the differential structure also, that is, to determine the admissible local
coordinates. This is a non-trivial problem: in two dimensions, causality does not de-
termine the differential structure, but in higher dimensions, it does. We first establish
the following lemma.

Lemma 19. If M and M̃ are n dimensional Cr manifolds (n ≥ 3, r ≥ 3) with Cr−1

Lorentz metrics g and g̃, such that the strong causality assumption holds on M , and
if φ is a bijection φ : M → M̃ such that φ and φ−1 preserve causal relationships, then
φ is a Cr diffeomorphism.

As φ and φ−1 preserve causal relationships, they are continuous with respect to the
Alexandroff topology onM and M̃ . Since the strong causality assumption holds onM ,
it will also hold on M̃ and the Alexandroff topologies of M and M̃ will coincide with
their manifold topologies. Let D be a local causality neighbourhood in M . Then φ(D)
will be such a neighbourhood in M̃ . Let U ⊂ D and Ũ ⊂ φ(D) be normal coordinate
neighbourhoods of p ∈ D and φ(p) ∈ φ(D), respectively. A point q ∈ U ∩ φ−1(Ũ)
can be reached from p by a future-directed null geodesic curve if and only if p−−>−q.
However, φ and φ−1 preserve causal relationships, so p−−>−q if and only if φ(q) can
be reached from φ(p) by a future-directed null geodesic curve. Thus φ and φ−1 map
null geodesic curves to null geodesic curves, though they may not map the parameter
differentiably.

To prove that the parameter is mapped differentiably, we shall employ a construc-
tion used by Zeeman [Zeeman 1964]. Let λ1(t), λ2(t), λ3(t) be null geodesic curves in
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U such that, for each point q2 ∈ λ2, there is a q1 ∈ λ1 with q1−−>−q2, for each point
q3 ∈ λ3, there is a q2 ∈ λ2 with q2−−>−q3, and for some range of q′1 ∈ λ1, there is a
q3 ∈ λ3 with q′1−−>−q3. [If U is sufficiently small, the components of the metric will
differ by arbitrarily small amounts from their values in Minkowski space. Comparison
with Minkowski space shows that such λ1(t), λ2(t), λ3(t) can be found.] The maps
ψ and ψ̃ defined by ψ(q′1) = q1 and ψ̃

(
φ(q′1)

)
= φ(q1) will be Cr diffeomorphisms.

If M and M̃ were two-dimensional, ψ and ψ̃ would be the identity, but for higher
dimensions, this is not necessarily the case. In fact, comparison with Minkowski space
shows that each point q1 ∈ λ1 has an open neighbourhood V on λ1 such that, if
p ∈ V , then we could find λ2 and λ3 such that ψ(p) = q1. Let t̃ be a Cr parameter on
the null geodesic curve φ

(
λ1(t)

)
. Then φ maps t to t̃ continuously and monotonically.

Thus φ(t) is differentiable almost everywhere by Lebesgue’s theorem. Let E be the
set of all values of t for which φ′(t) exists. We have

φ
(
ψ(t)

)
= ψ̃

(
φ(t)

)
,

where ψ and ψ̃ are Cr functions. Then for t ∈ E,

φ
(
ψ(t+ δt)

)− φ
(
ψ(t)

)

ψ(t+ δt) − ψ(t)
=
ψ̃
{
φ(t) +

[
φ′(t) + ε

]
δt
}
− ψ̃

(
φ(t)

)

[
ψ′(t) + η

]
δt

,

where ε, η → 0 as δt→ 0.
Thus ψ(E) ⊂ E. But for any value of t, there is an open neighbourhood V such

that if t1 ∈ V , we can choose ψ so that ψ(t1) = t. Thus φ(t) must be differentiable
everywhere, and as

φ′
(
ψ(t)

)
ψ′(t) = ψ̃′(φ(t)

)
φ′(t),

it follows that φ′(t) must be continuous. By repeating the above process, it may
be shown that φ(t) is of class Cr. Thus φ maps a Cr parameter of a null geodesic
curve to a Cr parameter. Comparison with Minkowski space shows that, in some
neighbourhood W ⊂ D of p, we can introduce four congruences of null geodesic
curves such that any point q ∈ W can be uniquely and differentiably described by the
composition of a displacement a given parameter distance t1 along a curve of the first
congruence, followed by a displacement a given parameter distance t2 along a curve
of the second congruence, and so on. Then t1, t2, t3, t4 will be local coordinates of the
complete Cr atlas of M . As φ maps null geodesic curves to null geodesic curves and
maps their Cr parameters to Cr parameters, t1, t2, t3, t4 will also be local coordinates
of the complete Cr atlas of M . Thus φ is a Cr diffeomorphism.

In Section 3, we saw how the metric could be measured physically using causal
relations. However, this presupposed that we could recognise the differential structure
of M , i.e., that we could tell which local coordinates would be admissible. This would
normally be fairly obvious, but in the vicinity of a singularity, it might not be so
simple. However, by Lemma 19, we may determine the differential structure of M by
observation of causal relationships. For if Vα is a subset of M and φα is a bijection of
Vα to an open set of R

4 such that, for some Cr Lorentz metric on φα(Vα), both φ and
φ−1 preserve causal relations, then (Vα, φα) belong to the complete Cr atlas of M . It
can be seen that, if the metric on M is assumed to be only Cr−1, then it is possible
to determine physically only the Cr differential structure of M . Thus, as was said in
Section 3, there is no point in assuming a C∞ structure for M unless we also assume
that the metric is C∞.

The strong causality assumption has another consequence which will be important
in the next section. This is the non-existence of partially imprisoned non-spacelike
lines. By a future-directed non-spacelike line we shall mean a broken non-spacelike
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Fig. 12. An example with imprisoned non-spacelike lines but no closed non-spacelike curves,
viz., the manifold R

1 ×S
1 ×S

1 described by coordinates t, y, ξ, where (t, y, ξ) and (t, y, ξ +1)
are identified and (t, y, ξ) and (t, y+1, ξ +a) are identified, with a an irrational number. The
Lorentz metric may be taken as: ds2 = (cosh t − 1)2(dt2 − dy2) + dtdy − dξ2.

curve which is inextendible in a future direction. In other words, it has no future
end point. We shall say that a future-directed non-spacelike line λ is partially future-
imprisoned if there is a compact set N such that for every p ∈ λ, there is a q ∈ λ∩N
with p < q, or in other words, λ keeps on intersecting N . We shall say that λ is totally
future-imprisoned if for some point p ∈ λ, we have < p) ∩ λ ⊂ N . In other words,
λ does not leave N in the future direction. Such a line must wind round and round
inside N and one might feel that this was possible only if there existed closed non-
spacelike curves. However, Carter has given an example, shown in Figure 12, which
disproves this. Nevertheless, we have the following result.

Lemma 20. If the strong causality assumption holds, there can be no partially (or
totally) imprisoned non-spacelike lines.

Any compact set N can be covered by a finite number of local causality neighbour-
hoods D. A future-directed non-spacelike line which intersects a neighbourhood D
must leave it again and not re-enter. Thus there must be a point p ∈ λ such that
there is no point q ∈ λ ∩N with p < q.

5.5 Cauchy surfaces

We shall call a closed (not necessarily compact), connected, spacelike 3-surface (with-
out boundary) a slice, and a slice which does not intersect any non-spacelike curve
more than once a partial Cauchy surface. We have the following result:

Lemma 21. If there exists a slice H in M , then there is a covering manifold M̂

with projection π : M̂ → M such that each connected component of π−1(H) is dif-
feomorphic to H and is a partial Cauchy surface in M̂ . The latter may be identical
to M .
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Let M̂ be the space of all pairs (p, [λ]), where p ∈ M and [λ] is an equivalence class
of curves from p to H , homotopic modulo p and H . The topological and differential
structure of M̂ is defined in a natural way as follows. Let {Vα, φα} be the complete
atlas of M . Let p and q be in Vα and μ be a curve in Vα from q to p. The set V̂α is
defined as the union over Vα of all parts of the form (q, [λ ◦ μ]), where λ ◦ μ is the
juxtaposition of λ and μ. Then {V̂α, φαπ} is an atlas for M̂ , where π : M̂ →M is the
covering map defined by

π(p, [λ]) = p.

The manifold M̂ has a natural metric induced from M . Let Ĥ be the set (p, [0]),
p ∈ H . Then Ĥ is a connected component of π−1(H) and is diffeomorphic to H . As
M and M̂ are time orientable, Ĥ will be a two-sided surface. Suppose there were a
non-spacelike curve γ in M̂ which intersected Ĥ only at two distinct points r1 and r2.
We could join r2 to r1 by a curve μ in Ĥ , and μ◦γ would be a closed loop from r1 which
crossed Ĥ only once. It could not be deformed to zero, since a continuous deformation
could change the number of times it crossed Ĥ by only an even number, as Ĥ has
no edges. Thus γ would be a curve from r1 to Ĥ which could not be deformed to a
zero curve from r1 to Ĥ . This is impossible, so no non-spacelike curve can intersect
Ĥ more than once.

The physical significance of a partial Cauchy surfaceH is that data on it determine
events in some region J of M which we shall call the Cauchy development of H .
We may define J as J+ ∪ J−, where J+ (J−) is called the future (past) Cauchy
development ofH and is defined as the set of all points q such that every past- (future-)
directed non-spacelike line through q intersects H . Clearly, points sufficiently near H
will be in J . By the future (past) Cauchy horizon L+ (L−) of H we shall mean J̇+−H
(J̇− −H). Using Lemmas 5.1 and 5.2, it can be seen that L+ (L−) is generated by
null geodesic segments which have no past (future) end points. We shall say that H
is a Cauchy surface if L+ and L− are empty, or equivalently, if J = M . A necessary
and sufficient condition for H to be a Cauchy surface is that it intersect every null
geodesic, for then, if its Cauchy horizons were non-empty, they would intersect H ,
which would be impossible. The existence of a Cauchy surface H would imply that M
was diffeomorphic to H×R

1. For as we saw in Section 5.2, M admits a non-vanishing
future-directed timelike vector field X . Each integral curve of X will intersect H and
can be parametrised in a differentiable manner from −∞ to ∞.

We shall deduce a number of properties of partial Cauchy surfaces which will
be used in the theorems on singularities in Section 6. For a set S, we shall define
Q+(S), resp. Q−(S), to be the set of all points q which have an open neighbourhood
W such that 〈S,W 〉, resp. 〈W,S〉, is compact or empty and such that the strong
causality assumption holds at all points of 〈S,W 〉, resp. 〈W,S〉. We shall define C+(S),
resp. C−(S), the future, resp. past, compact region of S to be 〈S) ∩ Q+(S), resp.
(S > ∩Q−(S). If q1, q2 ∈ C+(S), then 〈q1, q2〉 ⊂ C+(S). Moreover, as the strong
causality assumption holds on the compact set 〈q1, q2〉, every null geodesic segment
generating the boundary of 〈q1), resp. (q2〉, which intersects 〈q1, q2〉 will have a past,
resp. future, end point at q1, resp. q2. thus 〈q1, q2〉 will be closed.

Lemma 22. If Q+(S) is non-empty, it will be a null horizon generated by null
geodesic segments which have no past end point.

The set N defined as M − Q+(S) is such that q ∈ N implies � q) ⊂ N . We shall
show that the conditions of Lemma 18 are satisfied for each point q ∈ Ṅ . Let U be a
normal coordinate neighbourhood of q and B ⊂ U a ball of constant coordinate radius
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about q. Let rn be a sequence of points in B∩N converging to q, with rn+1 � rn. Let
Vn be a sequence of open neighbourhoods with rn+1 ∈ Vn+1 ⊂ (rn �. Suppose that,

for some n, Ḃ ∩ (V n
U
> was contained in Q+(S). Then since Ḃ ∩ (V n

U
> is compact,

it could be covered by a finite number of neighbourhoods Wi for which 〈S,Wi〉 was
compact. Thus 〈S, Vn〉 would be contained in

[
⋃

i

〈S,Wi〉
]

∪
[
B ∩ (V n

U
>

]
,

and so would be compact. Suppose that the strong causality assumption did not hold

at some point p ∈ B ∩ (V n
U
>. Then using the construction employed in the previous

section, there would be a null geodesic γ (without end points) through p at every point
of which the strong causality assumption would not hold. This would be impossible
as γ would intersect Q+(S). Thus the strong causality assumption would hold on
〈S, Vn〉. But this would imply that rn was in Q+(S), which is not the case. Thus from
each V n and from each rn−1, there must be a past-directed non-spacelike curve which
intersects Ḃ ∩N . By Lemma 18, Ṅ = Q̇+(S) will be a null horizon generated by null
geodesic segments which have no past end points.

Corollary 1. For a partial Cauchy surface H, C+(H) = J+, the future Cauchy
development of H.

Clearly, H is in Q+(H). The boundary of Q+(H) cannot intersect J+ since it would
then intersect H , which would be impossible. Thus C+(H) contains J+. Through
a point q ∈ L+, the future Cauchy horizon of H , there would a past-directed null
geodesic line λ generating L+ which was contained in 〉H, q〉. Thus the strong causality
assumption could not hold everywhere on < H, q > if it were compact. This shows
that q would not be in C+(H). Therefore C+(H) = J+.

Corollary 2. If S is a compact set contained in J , then 〈S) ∩ J will be contained in
C+(S).

By the previous corollary, a point q ∈ J will have an open neighbourhoodW such that
the strong causality assumption holds on the set 〈H,W 〉, which is compact or empty.
Similarly, S can be covered by a finite number of open neighbourhoods Wi such that
the strong causality assumption holds on the sets 〈Wi, H〉, which are compact. Thus
q ∈ Q+(S), since 〈S,W 〉 will be contained in

[
⋃

i

〈Wi, H〉
]

∪ 〈H,W 〉.

Lemma 23. C+(S) is causally simple.

We have to show that, if V is a compact set in C+(S), then each null geodesic segment
generating the boundary of (V >, resp. < V ), which intersects C+(S) has a future,
resp. past, end point on V . As V is compact, it can be covered by a finite number
of open neighbourhoods Wi for which 〈S,Wi〉 is compact. Thus 〈S, V 〉 is compact.
Suppose that there is a point q ∈ C+(S) on geodesic segments λ of (V̇ >. The future-
directed segment λ could have a future end point only on V . It will enter 〈S, V 〉 and
not leave it again. Thus as the strong causality assumption holds on 〈S, V 〉, λ must
have a future end point on V . Similarly, if q ∈ C+(S) is a point on a generating
segment of < V̇ ), the segment will enter the compact set 〈S, q〉, and so will have a
past end point on V .
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Corollary 1. J is causally simple.

A null geodesic generating segment of (V̇ > which intersects J− will either have a
future end point on V ∩ J−, or it will intersect H and the compact set 〈H,V 〉 and so
have a future end point on V ∩ J+.

For points q1, q2 with q2 � q1, d(q1, q2) will be defined to be the least upper bound
of the lengths of timelike curves from q1 to q2. It will be defined to be zero for q2 not
in 〈〈q1). For sets S1, S2, d(S1, S2) will be defined as the least upper bound of d(q1, q2)
for q1 ∈ S1, q2 ∈ S2. If d(q1, q2) is finite, given any δ > 0, we could find a timelike
curve λ from q1 to q2 of length greater than d(q1, q2) − δ/2. Then we could find an
open neighbourhood V of q2 such that λ could be deformed to give a timelike curve
from q1 to any point of V of length greater than d(q1, q2) − δ. Thus d(q1, q2), where
finite, is lower semi-continuous in q1 and q2. It is not, however, necessarily continuous.

Lemma 24. d(S, q) is finite for q ∈ C+(S).

Let N be the set of all points q for which d(S, q) is infinite. By Lemmas 17 and 18, Ṅ , if
non-empty, will be generated by null geodesic segments which have no past end points.
Suppose that there was a point r ∈ C+(S)∩N . Let W be an open neighbourhood of
r such that 〈S,W 〉 was compact. There would be a point p ∈ 〈S,W 〉 for which there
was no point q ∈ S such that q � p, as otherwise there would be an infinite sequence
of points pn ∈ 〈S,W 〉 with pn+1 � pn such that {� pn)} would give an open covering
of 〈S,W 〉 which contained no finite subcovering. Then d(S, p) = 0. This shows that
there would be a generating segment λ of Ṅ which intersected 〈S, r〉. By Lemma 20,
the past-directed null geodesic line λ would have to leave 〈S,W 〉. As λ would not
leave the open set (W �, it would leave 〈S). That would be impossible as any open
neighbourhood of a point on λ would contain a point q for which d(S, q) was infinite
and d(S, q) is zero for q not in 〈〈S). Thus d(S, q) is finite for q ∈ C+(S).

Lemma 25. d(q1, q2) is continuous in q1 and q2, and d(S, q2) is continuous in q2,
for q1, q2 restricted to C+(S).

Suppose q1 and q2 lie in a local causality neighbourhood D. As D is convex, there
will be a unique geodesic γ(v) in D with γ(0) = q1 and γ(1) = q2. This geodesic will
depend differentiably on q1 and q2, and the quantity

Δ(q1, q2) =
∫ 1

0

g

(
∂

∂v
,
∂

∂v

)
dv

will be a differentiable function on D ×D. If γ(v) is timelike, i.e., Δ > 0, it will be
the longest timelike curve from q1 to q2. If γ(v) is null or spacelike, there will be no
timelike curve from q1 to q2. Thus d(q1, q2) will be

[
Δ(q1, q2)

]1/2 if Δ > 0 and q2 � q1
and will be zero otherwise. It will therefore be a continuous function on D ×D.

Suppose that d(q1, q2) had a discontinuity δ > 0 in q2 for q2 = r ∈ C+(S). By this
is meant that δ is the least upper bound of ε > 0 such that every open neighbourhood
of r contains a point q2 such that d(q1, q2) > d(q1, r) + ε. Let D be a local causality
neighbourhood of r and B ⊂ D a ball of constant coordinate radius about r. As d is
continuous on D ×D, we could find an open neighbourhood V of r such that

d
(
V, (ṙ > ∩B

)
<

1
2
δ.

Let yn be a sequence of points in V converging to r, such that

d(q1, yn) > d(q1, r) + δ

(
1 − 1

n+ 3

)
.
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Then from each yn, we could find a timelike curve λn to q1 of length greater than

d(q1, r) + δ

(
1 − 1

n+ 2

)
.

Let ζ be a limit point of λN ∩ Ḃ. It would be in (r〉〉 ∩ Ḃ but not in (r〉〉 ∩ Ḃ, as
otherwise there would be a curve λn which could be deformed to give a timelike
curve from q1 to r of length greater than d(q1, r). Thus ζ would lie on a past-directed
null geodesic γ through r. Any open neighbourhood of ζ would contain a point q2
such that d(q1, q2) was arbitrarily close to d(q1, r) + δ. However, d(q1, ζ) would be
less than or equal to d(q1, r). [If not, there would be an open neighbourhood of ζ
on which d(q1, q2) > d(q1, r) and so there would be a timelike curve from q1 to r of
length greater than d(q1, r).] Thus d(q1, q2) would have a discontinuity in q2 of not
less than δ for q2 = ζ. In fact, this would be true for all points on the past-directed
null geodesic line γ, as if p were the least bound of the points at which there was such
a discontinuity. We could perform a similar construction about p and show that there
were points on γ and beyond p at which there was the same discontinuity. If W was
an open neighbourhood of r such that 〈S,W 〉 was compact, γ would leave 〈S,W 〉. As
before, this would imply that γ left 〈S), which would be impossible as d(q1, q2) is zero
and therefore, trivially, continuous for q2 not in < q2). Thus d(q1, q2) is continuous in
q2. Similarly, d(S, q2) will be continuous in q2.

Suppose that, at q1 ∈ C+(S), d(q1, q2) had a discontinuity δ > 0 in q1 restricted to
〈S). By this is meant that δ is the least upper bound of ε > 0 such that the intersection
of 〈S) with every open neighbourhood of r contains a point q1 for which d(q1, q2) is
greater than d(r, q2) + ε. By a construction similar to the above, there would be a
future-directed null geodesic line γ through r at each point of which d(q1, q2) would
have a discontinuity δ in q1 for q1 restricted to 〈S). But γ would have to leave the
compact set 〈S, q2〉. This would be impossible as there would then be a point of γ
which had an open set which did not intersect 〈S, q2〉. Thus d(q1, q2) is continuous in
q1 and q2 for q1 and q2 restricted to C+(S).

Corollary 1. If S is a compact set in J , then d(S, q) is continuous in q for q ∈ J .

By the second corollary to Lemma 22, 〈S)∩J is in C+(S). By Lemma 23, J is causally
simple. Therefore 〈S) ∩ J = 〈S) ∩ J . But d(S, q) = 0, for q not in 〈〈S). Thus d(S, q)
is continuous in q for q ∈ J . In particular, d(q1, q2) is continuous in q1 and q2 for
q1, q2 ∈ J .

The example of anti-de Sitter space shows that d(q1, q2) and d(H, q2) are not
necessarily continuous if q1 or q2 are not in J . We shall use the continuity of d(q1, q2)
to prove the existence of a timelike curve from q1 to q2 of maximum length.

Lemma 26. If q1, q2 ∈ C+(S) with q2 � q1, there is a timelike geodesic curve of
length d(q1, q2) from q1 to q2.

Let D ⊂ (q2〉〉 be a local causality neighbourhood of q1 and B ⊂ D a ball of constant
coordinate radius about q1. Let r be such that d(q1, q) + d(q, q2) with q ∈ 〈q1) ∩ Ḃ
is maximised for q = r. Let γ be the future-directed non-spacelike geodesic line from
q1 through r. The relation d(q1, q) + d(q, q2) = d(q1, q2) will hold for all points q
on γ between q1 and r. Let p be the least bound of the points of γ for which the
relation holds. Suppose that d(q1, p) < d(q1, q2). As d(q, q2) = 0 for q not in (q2〉〉, p
would be in 〈q1, q2〉. But 〈q1, q2〉 is contained in C+(S). Thus, as d is continuous on
C+(S), the relation would also hold at p and p would be in (q2〉〉. Let D̃ ⊂ (q2〉〉 be
a local causality neighbourhood of p and B̃ ⊂ D̃ a ball of constant coordinate radius
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about p. Let y1 and y2 be the two intersections of γ with ˙̃B and let r̃ be such that
d(p, q) + d(q, q2) for q ∈< p) ∩ ˙̃B was maximised for q = r̃. Then

d (p, r̃) + d (r̃, q2) = d(p, q2),

and r̃ would have to coincide with y2, as otherwise

d (y1, r̃) > d(y1, p) + d (p, r̃) ,

and so
d(q1, y1) + d (y1, r̃) + d (r̃, q2) > d(q1, q2).

Thus the relation
d(q1, q) + d(q, q2) = d (q1, q2)

holds for all points q for which d(q1, q) < d(q1, q2). As 〈q1, q2〉 is compact, γ must
leave (q2〉 at some point ζ. As d is continuous on 〈q1, q2〉, the relation will also hold
at ζ. But d(ζ, q2) = 0. Thus d(q1, ζ) = d(q1, q2). Suppose that ζ lay on the boundary
of (q2〉, not at q2. As C+(S) is causally simple, ζ would lie on a null geodesic segment
λ from q2. Then the juxtaposition of γ, from q1 to ζ, and λ would give a broken non-
spacelike geodesic curve from q1 to q2 of length d(q1, q2). There would be a variation
of this curve which gave a longer timelike curve from q1 to q2. Thus ζ coincides with
q2 and γ is a timelike geodesic curve of length d(q1, q2) from q1 to q2.

Corollary 1. If q is in J+, the future Cauchy development of H, there is a geodesic
curve orthogonal to H of length d(H, q) from H to q.

By Lemmas 22 and 25, d(p, q) for p ∈ H will attain its maximum value for some p in
the compact set H ∩ (q >. This timelike geodesic curve of length d(H, q) from p to q
must be orthogonal to H as otherwise there would be a variation which would give a
longer timelike curve from H to q.

Corollary 2. If S1 and S2 are compact sets in J with 〈〈S1, S2〉〉 non-empty, there is
a timelike geodesic curve from S1 to S2 of length d(S1, S2).

The quantity d(p1, S2) for p1 ∈ S1 will attain its maximal value for some p1. Then
d(p1, p2) for p2 ∈ S2 will attain its maximum value for some p2. There will be a
timelike geodesic curve from p1 to p2 of length d(S1, S2).

6 Singularities

6.1 Incompleteness and inextendibilty

We must decide what we are going to mean by a singularity of spacetime. An obvious
definition would seem to be that it is a point where the metric is singular (fails to
be Lorentz or fails to be suitably differentiable). However, the trouble with this is
that we could simply cut out the singular points and say that the remaining manifold
represented all of spacetime. Indeed, it would seem undesirable to include the singular
points in the definition of spacetime, as if we did, we would be introducing something
into the theory which was not physically observable, namely the manifold structure
and metric at those points. For as we saw in Section 5, the manifold structure can be
physically determined only where the metric is non-singular. On the other hand, we
want to omit only the singular points and not perfectly non-singular points as well.
We shall say that the spacetime manifold M is extendible if it can be imbedded as an



72 The European Physical Journal H

open submanifold in a larger four-dimensional, connected, paracompact, C4 manifold
and that it is metrically extendible if there is a C3 (Lichnerowicz: C1, piecewise C3)
Lorentz metric on the larger manifold which coincides with the physical metric on M .
The Schwarzschild solution in the original Schwarzschild coordinates provides a good
example of a manifold which is metrically extendible.

In order to make sure that no non-singular points are left out of the definition of
spacetime, we shall supplement postulates (a) and (b) of Section 3 by:

Postulate (c). The spacetime manifold M is metrically inextendible.

Although we have omitted the singular points from the definition of spacetime, we
can still recognise the ‘holes’ left where they have been cut out by the existence of
incomplete geodesics. Thus it would seem reasonable to make geodesic incompleteness
the basis of our definition of singularities of spacetime. We can distinguish three kinds
of incompleteness: that of spacelike, null, and timelike geodesics. They are not equiv-
alent [Kundt 1963]. The first kind has no particular physical significance as spacelike
geodesics are not important in the theory of relativity, but the second and third kinds
have a most immediate significance: they imply that there could be particles or pho-
tons whose histories would not exist after (or before) a certain length of time or affine
parameter, as measured by them. In other words, they would apparently be annihi-
lated (or created). It is this feature which many people have found so objectionable
and which has led them to suggest that, under realistic conditions, the general theory
of relativity would not predict the occurrence of singularities.

Of course, the cutting out of a singular point is not the only way in which geodesic
incompleteness could occur. The Misner space described in Section 3 contains future-
directed timelike geodesics which are totally future-imprisoned in a compact set and
which do not attain arbitrary length. However, this Misner incompleteness would seem
equally objectionable. It would imply that particles could apparently be annihilated
(or created) in a compact region. By Lemma 20 in Section 5, Misner incompleteness
would also imply that the strong causality assumption was violated.

We shall therefore take timelike and null geodesic incompleteness as our definition
of a singularity of spacetime. More precisely, we shall say that M is singularity-free
if and only if it is timelike and null geodesically complete.

6.2 The energy assumption

In order to predict the occurrence of singularities, we have to make some assumption
about the energy-momentum tensor, as otherwise any manifold and Lorentz metric
could be regarded as a solution of the Einstein equations. On the other hand, we do
not know the exact form of the energy-momentum tensor of the matter in the universe.
Thus to be physically realistic, a theorem predicting the occurrence of singularities
should depend only on some fairly general assumption about the nature of the energy-
momentum tensor. The theorems that will be presented satisfy this requirement. In
order of increasing strength, the assumptions that will be used are:

The weak energy assumption. The energy-momentum tensor obeys the
inequality TabW aW b ≥ 0 for any timelike vector W .

By continuity, this will then also be true for any null vector W . To get an idea of
what this means, consider an observer whose worldline has unit tangent vector V .
The energy density of matter as measured by him is TabV aV b. Thus the weak energy
assumption is equivalent to assuming that the energy density is non-negative to every
observer. This would seem very reasonable physically. Indeed, there would seem to be
grave quantum mechanical difficulties associated with the existence of negative energy
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density. For it seems that there would not be anything to prevent the creation of pairs
consisting of a quantum of negative energy and a quantum of positive energy. Even
if the cross-section for this pair production were very low, the infinite phase space
available to the quanta would cause an infinite number of such pairs to be produced
in any given region of spacetime.

In general, the energy-momentum tensor can be expressed in the form

Tab = μVaVb +
3∑

i=1

piZ
i
aZ
i
b,

where V and Z
i

are eigenvectors of the energy-momentum tensor and form an or-

thonormal basis. In the exceptional case when one of the eigenvectors is null, it can
be expressed as

Tab = μKaKb + μ(KaLb +KbLa) +
2∑

i=1

piZ
i
aZ
i
b,

where K and L are null and Z
i

are two unit spacelike vectors orthogonal to K and L
and to each other. The quantity μ will be the energy density to an observer whose
worldline is tangent to V and pi will be the pressures in the three spatial directions
Z
i
. The weak energy assumption will hold if

μ+ pi ≥ 0,

in the general case, and if

μ ≥ 0, μ ≥ 0, pi ≥ 0,

in the exceptional case. This certainly holds for any known form of matter and also for
all the projected equations of state for matter at supernuclear densities. In particular,
it can be seen that it does not matter how great the pressure becomes: the only things
that are ruled out are negative energy densities, or large negative pressures.

The energy assumption. The energy-momentum tensor obeys the inequality

TabW
aW b ≥ 1

2
WaW

aT,

for any timelike vector W .

In terms of the decomposition given above, this holds if

μ+ pi ≥ 0, μ+
∑

i

pi ≥ 0,

or in the exceptional case, if

μ ≥ 0, μ ≥ 0, pi ≥ 0.

This assumption is slightly stronger but again seems very reasonable physically and
would hold for any known form of matter. It rules out only negative energy densities
and large negative pressures.
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The strong energy assumption. The energy-momentum tensor obeys the
inequality

TabW
aW b >

1
2
WaW

aT,

for any non-spacelike vector W .

This holds in the general case if

μ+ pi > 0, μ+
∑

i

pi > 0,

but not in the exceptional case. It may be thought of as implying that there is some
matter with nonzero rest mass present everywhere.

6.3 Theorems on singularities

In Section 3, we saw that there were singularities in any Robertson-Walker solu-
tion for which the strong energy assumption held. However, we could not conclude
from this that there would necessarily be singularities in more realistic solutions with
local irregularities. The exact spatial homogeneity and spherical symmetry of the
Robertson-Walker solutions required that the matter was a perfect fluid whose flow
lines formed a geodesic congruence with zero vorticity and shear, and whose density
and pressure had zero spatial gradients, i.e., were constant in the 3-surfaces orthog-
onal to the flow lines. To see what could be the effects of acceleration, vorticity, and
shear of the flow lines of a perfect fluid, consider the Raychaudhuri equation. This
gives the rate of change of the expansion θ as

d
ds
θ = −1

3
θ2 − 2σ2 − 1

2
(μ+ 3p) + 2ω2 + V̇ a;a.

This shows that shear induces contraction, as do the density and pressure if the
strong energy assumption holds. However, vorticity induces expansion, as might be
expected, while aceleration of the flow lines can induce either expansion or contraction
depending on the sign of its divergence. The acceleration is given by

(μ+ p)V̇ = habp;b.

It will vanish if the spatial gradient of the pressure is zero. This explains why high
pressure cannot prevent the occurrence of a singularity in the Robertson-Walker so-
lutions: it is only pressure gradients that help.

If the vorticity and pressure were zero, the Raychaudhuri equation would give that
θ would become infinite within a finite distance to the future or to the past along each
geodesic flow line. This would imply a singularity as infinitesimally neighbouring flow
lines would intersect and the density would become infinite. However, vorticity and
pressure vanishing is clearly a very special case. If vorticity were present it might
prevent the flow lines from converging in the two spatial dierections orthogonal to
the axis of vorticity. One might think that there would be nothing to stop the flow
lines converging along the axis of vorticity. However, the rate of change of the rate of
separation tensor is

ψ̇ab = −CacbdV cV d − 1
3
habRcdV

cV d − ωa
cωcb − ψa

cψc
b + V̇(a;b) − V̇aV̇b.

This involves the ‘electric’ components Eab of the Weyl tensor. These could be such as
to induce an expansion in the direction of the axis of vorticity which would counteract
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the contraction induced by the Ricci tensor term hab(μ+ 3p)/6. We saw in Section 4
that Eab could be regarded as representing the gravitational effect at a point of matter
at other points of spacetime. Thus a purely local proof of the occurrence of singularities
does not seem possible because we could always suppose that a sufficiently large Eab
field existed locally, maybe as a gravitational wave propagated from another part of
the universe.

It will therefore be necessary to make some global assumptions about the universe.
Our guide as to what global assumptions would be reasonable will be the Copernican
principle. However, it would be difficult to check such assumptions by observation as
we can only see part of the universe.

An obvious generalisation of the Robertson-Walker solutions, which retained the
Copernican principle, would be solutions which were spatially homogeneous but not
spherically symmetric. Such solutions would permit the flow lines of the matter to
have acceleration, vorticity, and shear. Although the universe seems approximately
spherically symmetric at the present time, there might have been large anisotropies
at an earlier epoch. The following result is an improved version of a theorem given by
Hawking and Ellis [Ellis 1965c]:

Theorem 1. M cannot be timelike geodesically complete if:

1. The strong energy assumption holds.
2. There is a slice, i.e., a spacelike 3-surface without boundary, H in which there are

at least three vector fields K which are independent at each point and for which
Lkhab = 0 and LkXab = 0, where hab and Xab are the first and second fundamental
tensors of H (this means that M is homogeneous on H).

3. The evolution of the Cauchy development of a partial Cauchy surface is determined
by the Cauchy data on the surface.

By Lemma 21 of Section 5,M will have a covering manifold M̂ in which each connected
component of the image of H will be a partial Cauchy surface. We shall assume
that M̂ is timelike geodesically complete and show that this is inconsistent with
conditions (1), (2), and (3). Let Ĥ be a connected component of the image of H . By
condition (2), the Cauchy data on Ĥ is homogeneous. Therefore, by condition (3),
the Cauchy evolution of any region of Ĥ is equivalent to the Cauchy evolution of any
other similar region of Ĥ (there being no time bombs). This implies that the surfaces
s = const. are homogeneous, if they lie within the Cauchy development of Ĥ , where s
is the distance measured along the geodesics normal to Ĥ . These surfaces s = const.
must lie either entirely within or entirely without the Cauchy development of Ĥ ,
as otherwise there would be equivalent regions of Ĥ which had inequivalent Cauchy
evolutions. As the Cauchy horizon of Ĥ is null, this imples that, while the surfaces
s = const. remain spacelike 3-surfaces, they will lie within the Cauchy development of
Ĥ . The geodesics orthogonal to Ĥ will also be orthogonal to the surfaces s = const.,
as a vector representing the separation of points equal distances along neighbouring
geodesics will remain orthogonal to the geodesics if it is so initially.

As in Section 4, we can represent the separation of neighbouring geodesics orthog-
onal to Ĥ by a matrix A which is the unit matrix on Ĥ . By homogeneity, it will be
constant on the surfaces s = const., while these lie in the Cauchy development of Ĥ .
While A is non-degenerate, the map from Ĥ to a surface s = const. defined by the
geodesics will be of rank 3, and so the surfaces will be spacelike 3-surfaces contained
within the Cauchy development of Ĥ . The expansion

θ = (detA)−1 d
ds

detA
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obeys the Raychaudhuri equation

d
ds
θ = −1

3
θ2 − 2σ2 −RabV

aV b,

where the vorticity is zero. By the Einstein equations and the strong energy assump-
tion, RabV aV b is positive. Thus θ will become infinite and A degenerate for some
finite positive or negative value s0 of s. As the map from Ĥ to the surface s = s0 can
have rank at most 2, this surface will be at most two-dimensional. As the geodesics lie
within the Cauchy development of Ĥ for |s| < |s0|, the surface s = s0 will lie in the
Cauchy development or on the Cauchy horizon of Ĥ , and its position will be uniquely
determined by the Cauchy data on Ĥ . By the strong energy assumption, the energy-
momentum tensor has a unique eigenvector everywhere. These eigenvectors will form
a C1 timelike vector field whose integral curves may be thought of as representing
the flow lines of the matter. As the surface s = s0 lies in the Cauchy development
or horizon of Ĥ , all the flow lines that pass through it will intersect Ĥ. But then, as
Ĥ is homogeneous, all the flow lines through Ĥ must pass through s = s0. This is
impossible as Ĥ is three-dimensional and s = s0 is two-dimensional. In fact, if all the
flow lines passed through a 2-surface, the density would be infinite.

This theorem is useful as it shows that large scale effects like the rotation of the
whole universe cannot prevent the occurrence of singularities in solutions which satisfy
the Copernican principle. However, it is still unrealistic in that, by requiring exact
spatial homogeneity, it makes no allowance for the effect of local irregularities. In fact
Lifshitz and Khalatnikov [Lifshitz 1963] have claimed that, in general, singularities will
not occur in solutions without exact symmetries. That is, the slightest perturbation
of a solution with a singularity would prevent the occurrence of the singularity.

The first theorem to deal with solutions without exact symmetries was given in
outline by Penrose [Penrose 1965b]. It was designed to prove the occurrence of a
singularity in a collapsing star. As a star of mass greater than about twice that of the
sun exhausts its nuclear fuel and cools, there is apparently no mechanism that can
support it against its self-gravity, and so it will collapse. If the collapse was exactly
spherical, the solution could be integrated explicitly and a singularity would always
occur. However, it is not obvious that this would the case if there were irregularities
or a small amount of angular momentum. Indeed, in Newtonian theory the smallest
amount of angular momentum could prevent the occurrence of infinite density and
cause the star to re-expand.

However, Penrose showed that the situation was very different in the general theory
of relativity: once the star had passed within the Schwarzschild surface, i.e., the surface
r = 2m, it could not come out again. In fact the Schwarzschild surface has been defined
only for an exactly spherically symmetric solution, but the more general criterion used
by Penrose is equivalent for such a solution and applicable also to solutions without
exact symmetry. It is that there should exist a ‘closed trapped surface’ C. By this
is meant a closed, i.e., compact and without boundary, spacelike 2-surface (normally
S

2) such that the two families of null geodesics orthogonal to C are converging at C,
i.e., Tr

(
X
1

)
and Tr

(
X
2

)
negative, where X

1
and X

2
are the two null second fundamental

forms of C. We may think of C as being in such a strong gravitational field that
even the ‘outgoing’ light rays from it are dragged back and are in fact converging.
One would expect that a sufficiently small perturbation from exact symmetry would
not prevent the occurrence of a closed trapped surface. This has been verified by
Doroshkevish et al. [Doroshkevish 1966]. Penrose’s result is then:

Theorem 2. M cannot be null geodesically complete if:

1. The weak energy assumption holds.
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2. There is a non-compact Cauchy surface H.
3. There is a closed trapped surface C.

By Lemma 20 of Section 5, M will be causally simple. This implies that the boundary
of � C), the chronological future of C, will be generated by null geodesic segments
which have past end points on C. These segments will be orthogonal to C. Suppose
that M were null geodesically complete. Then by Lemma 4 of Section 4, there would
be a point conjugate to C along each future-directed null geodesic orthogonal to C,
as RabKaKb ≥ 0 and Tr

(
X
1

)
< 0 and Tr

(
X
2

)
< 0. By Lemma 16, points on a null

geodesic beyond the point conjugate to C would lie in � C). Thus each generating
segment of � Ċ) would have a future end point at or before the point conjugate to
C. Near C, we could assign, in a differentiable manner, an affine parameter on each
null geodesic orthogonal to C. Consider the differentiable map

β = C × [0, b]×Q −→M,

whereQ is the discrete set {1, 2}, defined by taking each point of C an affine parameter
distance v ∈ [0, b] along the two families of future-directed null geodesics orthogonal
to C. For some value of b, β

(
C × [0, b] ×Q

)
would contain � Ċ). Thus � Ċ) would

be compact, being a closed subset of a compact set. We saw in Section 5.2 that M
admitted a future-directed timelike C3 vector field. Each integral curve of this field
would intersect H once and once only, and � Ċ) at most once. They would define
a map of � Ċ) into H . As � Ċ) was compact, its image would be also. But this is
impossible as H is non-compact and � Ċ) is a three-dimensional manifold (without
boundary). Thus M cannot be null geodesically complete.

If we interchange past and future in the definition of closed trapped surfaces, they
occur also in Robertson-Walker solutions [Hawking 1965b]. One way of seeing this is
to consider the past-directed null geodesics through the point t = t0, r = 0. They
have the equation

dt = −S(t)
dr

(1 −Kr2)1/2
.

For each constant value of t, the null geodesics will describe an S2 whose area is
4πr2S2(t). The expansion θ̃ of the null geodesics will be (area)−1d(area)/dv, where v
is an affine parameter along the null geodesics. Thus,

θ̃ =
2
rS

d
dt

(rS)
dt
dr
,

where dt/dr will be negative. By the Einstein equations,

d
dt

(rS) = − (1 −Kr2
)1/2

+ rṠ

= − (1 −Kr2
)1/2

+ r

(
1
3
μS2 −K

)1/2

.

If μ > 0 and K = 0 or −1, the second term will dominate for t less than some
value t1 > 0. Thus the past-directed null geodesics which were diverging initially
will be made to start converging by the gravitational effect of the matter. For each
value of t less than t1, the surface S

2 described by the null geodesics will be a closed
trapped surface (the other family of null geodesics orthogonal to the surface will also
be converging). If we take one of these surfaces at t = t2, with t2 < t1, the null
geodesics orthogonal to it will have a finite convergence. Thus there will also be a
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closed trapped surface in any solution without exact symmetry which is sufficiently
similar to a Robertson-Walker solution in the region bounded by the past null cone
of the point t = t0, r = 0, and by the 3-surface t = t2. In other words, a sufficiently
small perturbation of a Robertson-Walker solution could not prevent the occurrence
of a closed trapped surface.

The time t1 at which the past-directed null geodesics start converging will depend
on which Robertson-Walker solution is being considered. For K = 0 and p = 0
(Einstein-de Sitter solution), t1 = 8t0/27. In fact, we think we can see objects such
as quasars which are further back than this and there does not seem any sign of
major inhomogeneity or anisotropy at this time (though admittedly the evidence is
not strong enough to rule them out completely). Thus it might be reasonable to
suppose that there would be a closed trapped surface in any solution which described
the universe. If we also assumed that it had a non-compact Cauchy surface, we could
conclude that it must have a singularity.

However, as a Cauchy surface is spacelike, it is difficult to see how one could
tell by observation whether it was compact or not. Also one cannot be sure that
the universe is really sufficiently similar to a Robertson-Walker that a closed trapped
surface would exist. Thus it would be good to have a theorem which did not depend on
the non-compactness of the Cauchy surface or on the solution being almost spherically
symmetric. This will be given for an ‘expanding’ solution.

At the present time, the universe is expanding in the sense that, on average, the
galaxies are moving apart. However, there are of course localised regions in which the
matter is contracting. We therefore want a definition which says that the universe is
expanding on average, but which does not exclude the existence of local contractions.
The one we shall use is: there exists a Cauchy surface H such that Tr(X) has a positive
lower bound on H , where X is the second fundamental tensor of H . In other words,
the geodesics orthogonal to H are diverging at H . Of course, this would not be true
for just any Cauchy surface, but if the solution was expanding in any sense, it would
seem reasonable to suppose that we could deform a given Cauchy surface into one for
which it was true.

Theorem 3. M cannot be timelike geodesically complete if:

1. The energy assumption holds.
2. There is a Cauchy surface H.
3. Tr(X) ≥ b > 0, where b is a constant.

This follows directly from the lemmas established in Sections 4 and 5. By Lemma 26
of Section 5, there is a geodesic orthogonal to H of length d(p,H) from any point
p ∈ (H � to H . By Lemma 12 of Section 4, there cannot be a point conjugate to
H along this geodesic between p and H . Suppose that M were timelike geodesically
complete. Then by conditions (1) and (3) and by Lemma 2 of Section 4, there would
be a point conjugate to H on every past-directed geodesic orthogonal to H , within
a distance 3/b from H . However, as we could continue any past-directed geodesic
orthogonal to H to arbitrary length, there would be points p for which d(p,H) > 3/b.
This shows that M cannot be timelike geodesically complete

Although it would seem reasonable to argue from the Copernican principle that, as
the universe is expanding in our neighbourhood, it should be expanding everywhere,
this is not an assumption that can be tested by observation. For all we can tell, there
might be regions where the universe is contracting. One would therefore like to know
whether one could avoid assuming condition (3) above. This is possible if the Cauchy
surface is compact:

Theorem 4. M cannot be timelike geodesically complete if:

1. The energy assumption holds.
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2. There is a compact Cauchy surface H.
3. The strong energy assumption holds on H.

Condition (3) might seem unrealistic, as it would rule out there being any empty
regions on H . However, it is adopted simply for convenience. All that is really neces-
sary is that every timelike geodesic should encounter some matter or some randomly
orientated Weyl tensor field in the vicinity of H .

By condition (3), the energy-momentum tensor on H can be expressed as

Tab = μVaVb +
∑

i

piY
i
aY
i
b,

where μ + pi > 0, μ +
∑
i pi > 0. As the Ricci tensor is C1, the energy-momentum

tensor will be also. Thus there will be a positive constant f such that, on H ,

Tab = fVaVb + Sab,

where the energy assumption holds for Sab, i.e.,

SabW
aW b ≥ 1

2
WaW

aS,

for any timelike vector W . For each p ∈ H , we can choose normal coordinates
u1, u2, u3, u4 in a neighbourhood U of p such that V = ∂/∂u4 at p. Then we can
find a positive constant b such that, for each p, the ball B of coordinate radius b
about p is contained in U and such that in B the energy-momentum tensor can be
expressed as

Tab =
1
2
fV aV b + Sab,

where V is a timelike unit vector field which coincides with V on H and where the
energy assumption holds for Sab.

Suppose that M were timelike geodesically complete. Let γ(s) be a timelike
geodesic through p ∈ H with p = γ(0), and let E1, E2, E3, E4 be an orthonormal basis
parallel transported along γ with E4 = (∂/∂s)γ. Let Zi = Ei cos(πs/�), i = 1, 2, 3,
where � is a positive constant. Then the second variation of the length of γ between
the points q1 = −�/2 and q2 = �/2, induced by the variation vector Zi, is

L(Zi, Zi) = −
∫ �/2

−�/2
g

(
Zi,

{
D2Zi
∂s2

+R(E4, Zi)E4

})
ds.

But ∑

i

g
(
Ei, R(E4, Ei)E4

)
= −R(E4, E4).

Therefore,
∑

i

L(Zi, Zi) = − 3
2�

+
∫ �/2

−�/2
R(E4, E4) cos2

πs

�
ds.

By the Einstein equations,

R(E4, E4) = T (E4, E4) − 1
2
T.

This will be non-negative, by the energy assumption. In γ ∩B,

R(E4, E4) ≥ 1
4
f
[
g(E4, V )

]2
.
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Thus if � = �∗ > 3b,
∫ �/2

−�/2
R(E4, E4) cos2

πs

�
ds ≥ 1

16
f

∫

γ∩B

[
g ((∂/∂s)γ , V )

]2
ds.

But ∫

γ∩B

[
g
(
(∂/∂s)γ , V

)]2
ds ≥

[∫

γ∩B
g
(
(∂/∂s)γ , V

)
ds
]2

≥ 2b2.

Therefore, if �∗ was also greater than 24/fb, the quantity
∑

i L(Zi, Zi) would be
positive and γ would not be the longest timelike curve from q1 to q2.

Let H1, resp. H2, be the set (not necessarily a spacelike surface) formed by moving
each point of H a distance �∗ to the past, resp. future, along the geodesics orthogonal
toH . SinceH is compact,H1 andH2 would be compact. By the corollary to Lemma 26
of Section 5, there would be a timelike geodesic γ of length d(H1, H2) from H1 to H2.
Let p be the point where γ intersects H . By construction, d(H1, p) and d(p,H2) would
be greater than or equal to �∗. Thus γ could not be the longest timelike curve from
H1 to H2. Therefore, M cannot be timelike geodesically complete.

So far we have been assuming that the solutions would have Cauchy surfaces. This
again is not something that can be tested by observation. Thus maybe all that our
theorems prove is that realistic solutions do not have Cauchy surfaces: as they evolve
from a given surface, a Cauchy horizon always occurs and prevents the appearance of
a singularity. However, the following theorem shows that, at least in some cases, this
cannot happen.

Theorem 5. M cannot be timelike geodesically complete if:

1. The energy assumption holds.
2. There is a compact slice (spacelike 3-surface without boundary) H.
3. Tr(X) > 0 (the geodesics orthogonal to H are diverging at H).

These conditions are rather similar to those of Theorem 3, the difference being that H
is not required to be a Cauchy surface but is required to be compact. This is necessary,
as otherwise Minkowski space would satisfy the conditions.

By Lemma 21 of Section 5, M will have a covering manifold M̂ such that, in M̂ ,
each connected component of the image of H will be diffeomorphic to H and will be
a partial Cauchy surface in M̂ . Suppose that M̂ was timelike geodesically complete
and let Ĥ be a connected component of the image of H . As Tr(X) has some positive
lower bound b on Ĥ , there would be a point conjugate to Ĥ on every past-directed
geodesic orthogonal to Ĥ within a distance 3/b from Ĥ . If p ∈ J− (the past Cauchy
development of Ĥ), there would be a timelike geodesic orthogonal to Ĥ of length
d(p, Ĥ) from p to Ĥ . As this geodesic could not contain a point conjugate to Ĥ , the
quantity d(p, Ĥ) could not be greater than 3/b. This would imply that Ĥ had a past
Cauchy horizon L−. Then for q ∈ L−, d(p, Ĥ) would have an upper bound 3/b, as
otherwise there would be a timelike curve from L− to Ĥ of length greater than 3/b,
and this curve would contain points in J− at distances greater than 3/b from Ĥ . As
q is not in J−, we cannot assume that d(p, q) would be continuous. However, as Ĥ is
compact and d(p, Ĥ) finite, we can still use a method similar to that in Lemma 26 of
Section 5 to show that there would be a geodesic orthogonal to Ĥ of length d(p, Ĥ)
from q to Ĥ .

Consider the function d(p, q) for p ∈ Ĥ. There would be a point r ∈ Ĥ such that
any open neighbourhood of r in Ĥ would contain a value of d(q, p) arbitrarily close
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to d(q, Ĥ). Let U be a normal coordinate neighbourhood of r and B ⊂ U a ball of
constant coordinate radius about r. Let yn be a sequence of points in Ĥ converging
to r such that

d(q, yn) > d(q, Ĥ)
(

1 − 1
n+ 2

)
,

and let λn be timelike curves of length greater than

d(q, Ĥ)
(

1 − 1
n+ 1

)

from q to yn. Let ζ be a limit point of λn ∩ Ḃ. Then ζ ∈ Ḃ ∩ (r >. Suppose that ζ did
not lie on γ, the past-directed geodesic through r orthogonal to Ĥ . Then as d(p, Ĥ)
is continuous for p ∈ J−, there would be an open neighbourhood V of ζ, a δ > 0, and
an N ∈ N such that

d(p, Ĥ) > d(p, yn) + δ, for n > N and p ∈ V .

But there would be a curve λn with n > N and n > 1/δ which intersected V . This
could be deformed to give a timelike curve of length greater than d(q, Ĥ) from q to
Ĥ . Thus ζ would like on γ. The relation

d(q, p) + d(p, r) = d(q, Ĥ)

would hold for all points p on γ between r and ζ. But then it would hold for all points
p on γ for which d(p, r) ≤ d(q, Ĥ), for if X were the least bound of points for which
it held, we could perform a construction similar to that in Lemma 26 of Section 5
and prove that it held for points beyond X . All the points for which d(p, r) < d(q, Ĥ)
would lie in J−. As d is continuous in J− and as M̂ is supposed to be timelike
geodesically complete, there would be points p on γ for which d(p, r) was arbitrarily
close to d(q, Ĥ). Thus, as d is lower semi-continuous, there would be a point p on
γ for which d(p, r) = d(q, Ĥ). This point would either coincide with q or lie on the
boundary of < q) not at q. An application of a similar construction shows the latter
to be impossible. Thus γ is a past-directed geodesic orthogonal to Ĥ of length d(q, Ĥ)
from q to Ĥ .

Let q1 be another point on the same null geodesic generating segment λ of L−

with q−−>−q1. There would be a geodesic γ1 of length d(q1, Ĥ) from q1 to Ĥ . This
could be extended along λ to give a broken non-spacelike geodesic of length d(q1, Ĥ)
from q to Ĥ . One could find a variation of this that gave a timelike curve of length
greater than d(q1, Ĥ) from q to Ĥ . Thus d(q, Ĥ) would strictly decrease along each
future-directed null geodesic generating segment of L−.

Consider the differentiable map

β : Ĥ ×
[
0,

3
b

]
−→ M̂,

defined by taking each point of Ĥ a distance s ∈ [0, 3/b] along the past-directed
geodesics orthogonal to Ĥ. The image

β

(
Ĥ ×

[
0,

3
b

])
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would be compact and would contain L−. Thus, as L− is closed, it would be compact.
But then, as d is lower semi-continuous, d(q, Ĥ) ought to have a minimum on L−.
This would be impossible as d(q, Ĥ) would strictly decrease along each future-directed
null geodesic generating segment of L−, and such a segment could have no future end
point. Therefore M̂ , and hence M , cannot be timelike geodesically complete.

This theorem shows that neither the existence of a Cauchy surface nor the holding
of any causality assumption are necessary to prove the occurrence of a singularity.
However, it still involves a condition which cannot be tested observationally. It does
not seem possible to do away with untestable conditions entirely, but in the following
theorem, the only such condition is that the strong causality assumption should hold.

Theorem 6. M cannot be timelike and null geodesically complete if:

1. The energy assumption holds.
2. The strong causality assumption holds.
3. There is a point p, a past-directed unit timelike vector X ∈ Tp and positive con-

stants b, c such that on each past-directed timelike geodesic γ(s) through p, the
expansion θ of these geodesics becomes less than −cg(X, (∂/∂s)γ

)
within a dis-

tance of b
[
g
(
X, (∂/∂s)γ

)]−1 from p.

Condition (3) implies that all the past-directed null geodesics through p will start
converging again. This is a fairly severe requirement but one that could in principle
be tested by observation. It would be satisfied in a Robertson-Walker solution. Thus
it should also be satisfied by a solution which was sufficiently similar to a Robertson-
Walker solution in the region bounded by the past null core of p and by a surface
t = t2.

Interchanging past and future, this theorem could also be used to prove the occur-
rence of a singularity in an approximately spherical collapsing star. This is important
because Theorem 2 can be applied only when there is a non-compact Cauchy surface.
However, the examples of the Reissner-Nordström and Kerr solutions show that the
addition of a small electric charge or of a small amount of angular momentum can
cause a Cauchy horizon to appear.

Suppose that M were timelike and null geodesically complete. Then conditions (1)
and (3) would imply that there would be a point conjugate to p within a distance

(
b+

3
c

)
[
g
(
X, (∂/∂s)γ

)]−1

along each past-directed timelike geodesic γ(s) through p. Take natural coordinates
u1, u2, u3, u4 in Tp with X along the u4 axis. Then within a coordinate distance of
2(b + 3/c) along each past-directed timelike ray in Tp from the origin, there would
be a point whose image in M under the exponential map would be a point conjugate
to p.

If D is a local causality neighbourhood of p, then D ∩ (p > will be in C−(p),
the past compact region of p. By Lemma 26 of Section 5, there will be a timelike
geodesic curve of length d(p, q) from each point q ∈ Q−(p) ∩ (p � to p. As this can
contain no point conjugate to p, Q−(p) ∩ (p� would be contained in exp(N), where
N is the compact region in Tp consisting of all points on past-directed non-spacelike
rays from the origin at coordinate distances not greater than 2(b + 3/c) from the
origin. Since M was assumed timelike and null geodesically complete, exp(N) would
be defined. Thus Q−(p) ∩ (p� would be compact. But C−(p) equals Q−(p) ∩ (p >,
which is contained in Q−(p) ∩ (p �. Therefore, as Q−(p) is open, C−(p) and Ċ−(p)
are contained in Q−(p) ∩ (p�, and so are compact. We could therefore cover Ċ−(p)
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by a finite number of open balls Bi, for each of which Bi was contained in a local
causality neighbourhood. As any past-directed timelike geodesic from p would have
to leave the compact set C−(p), we could find a point q1 ∈ (p � which lay in one of
these balls B1, but which was not in C−(p).

Every non-spacelike curve from q1 to p would have to intersect C−(p). As Q̇−(p)
is a null horizon, no future-directed non-spacelike curve which intersects Q−(p) can
leave it again. Therefore, every non-spacelike curve from q1 to p would enter C−(p)
and not leave it again. Suppose that 〈〈q1, p〉〉 ∩ Ċ−(p) was contained in B1. Then
〈〈q1, p〉〉 would be contained in B1 ∪C−(p) and so would be compact. This would be
impossible, as it would imply that each point of the non-empty set 〈〈q1, p〉〉 would
be in C−(p), which could not be the case as q1 was not in C−(p). This shows that
there would have to be a timelike curve λ1 from q1 to p which intersected Ċ−(p) in
some other ball B2. Then we could find a point q2 ∈ λ1 ∩B2 which was not in C−(p).
Repeating the above, there would be an infinite sequence of points qn, timelike curves
λn from qn to p, and balls Bn ⊃ λn−1 ∩ Ċ−(p). As a strong causality assumption
holds, no curve λn could return to an earlier ball. Thus the Bn would be distinct.
But this would be impossible, as there were only a finite number of balls Bi covering
Ċ−(p). Thus M would not be timelike and null geodesically complete.

A further theorem on singularities has been given by Geroch [Geroch 1966]. As
in Theorem 4, the aim is to dispense with the assumption that the normals to the
Cauchy surfaces are diverging. It is replaced by the condition that there should be no
particle or event horizons.

6.4 The description of singularities

The preceding theorems prove the occurrence of singularities in a large class of solu-
tions, but give little information as to their nature. To investigate this in more detail,
one would need to define what one meant by the size, shape, location, and so on, of a
singularity. This would be fairly easy if the singular points were included in the space-
time manifold. However, as was said in Section 6.1, it would be impossible physically
to determine the manifold structure at such points. In fact, there would probably
be several manifold structures which agreed for the non-singular regions but which
differed for the singular points. For example, the manifold at the t = 0 singularity in
the Robertson-Walker solutions could be that described by the coordinates t, r cos θ,
r sin θ cosφ, r sin θ sinφ, or that described by t, Sr cos θ, Sr sin θ cosφ, Sr sin θ sinφ.
In the first case, the singularity would be a 3-surface, and in the second, a single
point.

What is needed is a description based on measurements at non-singular points
only. The one we shall give is probably not unique, but is based on the definition of
singularities that we have adopted, namely, geodesic incompleteness.

The tangent bundle T (M) may be thought of as consisting of the tangent spaces
Tp for every p ∈ M . If u1, u2, u3, u4 are local coordinates in an open neighbourhood
U of p, any vector V ∈ Tp can be represented as V a∂/∂ua. Then

{zA} =
{
u1, u2, u3, u4, V 1, V 2, V 3, V 4

}

will be local coordinates in the open neighbourhood π−1(U), where π : T (M) →M is
the natural projection which maps each point of Tp to p. The tangent space Tq(T (M))
to the tangent bundle at a point q ∈ T (M) will have the coordinate basis {∂/∂zA}.
The subspace of Tq(T (M)) spanned by the vectors {∂/∂V a} is called the vertical
subspace, denoted Pq, since it is tangent to the fibre Tπ(q)(M). It does not depend on



84 The European Physical Journal H

the choice of local coordinates in U . On the other hand, the subspace of Tq(T (M))
spanned by the vectors {∂/∂ua} does depend on the local coordinates. However, the
subspace spanned by

D
∂ua

=
∂

∂ua
− Γ cabV

b ∂

∂V c

is coordinate independent. It is called the horizontal subspace, denoted by Qq. Then
Tq = Pq +Qq.

If γ(t) is a curve in M through π(q), there will be a unique curve γ(t) called the
lift of γ(t) in T (M) through q such that

π
(
γ(t)

)
= γ(t),

and such that the tangent vector (∂/∂t)γ is horizontal everywhere. Interpreted in
M , γ(t) =

{
ua(t), V a(t)

}
represents both a curve γ(t) = ua(t) and a vector field

V (t) = V a(t)∂/∂ua along γ(t). As
(
∂

∂t

)

γ

=
dua

dt
∂

∂ua
+

dV b

dt
∂

∂V b

is horizontal, we deduce that

dV b

dt
= −Γ bacV a

duc

dt
.

Thus V (t) is parallel transported along γ(t) in M . A point q in T (M) with coordinates
ua, V a may be thought of as a point in the tangent space Tπ(q)(M). Thus there is a
natural correspondence which assigns to q the vector drawn from the origin in Tπ(q)

whose components are V a. This correspondence defines an intrinsic, global, vertical
vector field W = V a∂/∂V a.

We can also define on T (M) an intrinsic, global, horizontal vector field

X = V a
D

Dua
.

This may be interpreted as follows. Let γ(t) be the unique geodesic in M through
π(q) such that (

∂

∂t

)

γ

= V a
∂

∂ua
at π(q),

and let γ(t) be the lift of γ(t) through q in T (M). Then (∂/∂t)γ = X .
The exponential map may be thought of as a map T (M) →M which takes a point

q in Tπ(q)(M) to the point in M a unit parameter distance along the geodesic γ(t)
through π(q) for which (

∂

∂t

)

γ

= V a
∂

∂ua
.

Equivalently, one could go a unit parameter distance along γ(t) in T (M) and then
project down into M . A third way would be to proceed down the integral curves of
the ‘diagonal’ vector field X −W until one reached the cross-section of zero vectors
which can be identified with M . These three equivalent procedures are illustrated in
Figure 13 for the simple case of the tangent bundle to a one-dimensional manifold.

All points on a diagonal curve in T (M) will have the same image in M under the
exponential map. If M is four-dimensional, T (M) will be eight-dimensional and there
will be a three-dimensional family of diagonal curves in T (M) corresponding to each
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Fig. 13. The tangent bundle of a one-dimensional manifold M . The latter is identified with
the cross-section of zero vectors in T (M) (horizontal line). The vertical line through π(q)
represents Tπ(q)(M). Under the exponential map, the point q is taken down the diagonal
integral curve of X − W to where it intersects M . Also shown is the region S for which the
exponential map is not defined.

point of M . If M is not geodesically complete, the exponential map will not be defined
for some points of T (M). The diagonal curves through these points will be defined,
but they will not reach the cross-section of zero vectors in T (M). We may think of
the boundary of the region S of T (M) for which the exponential map is not defined
as representing the incompleteness and hence the singularities of M . This boundary
will in general be seven-dimensional and will be generated by diagonal curves which
just fail to reach the cross-section of zero vectors. In order to be able to talk about
the dimension, etc., of the singularity, one would want to be able to say that some
of these boundary diagonal curves correspond in some sense to the same point of
some boundary of M . One possible way of establishing such a correspondence is given
below.

The exponential map Tp(M) → M is of rank 4, except at points conjugate to
p. However, such points are isolated [Milnor 1963, p. 98]. Thus the exponential map
T (M) →M is open, i.e., it maps open sets into open sets. We shall say that diagonal
curves λ1 and λ2 are in particular correspondence if exp(V1) intersects exp(V2) (where
defined) for every pair of open neighbourhoods V1 of λ1 and V2 of λ2. Then we shall
define a general correspondence class of the diagonal curves in some region as a set
which cannot be divided into two disjoint subsets such that no curve of one subset is
in particular correspondence with any curve of the other subset, and which is itself
not a subset of any larger such set. Invoking the axiom of choice, each diagonal curve
in a given region will belong to one and only one general correspondence class for
that region. Let M1 be the space consisting of the general correspondence classes of
diagonal curves in T (M)−S. Each point of M1 will represent all the diagonal curves
in T (M)−S whose image under the exponential map is some point in M . Thus there
is a natural one-to-one correspondence between M1 and M . This suggests that M2,
the space consisting of the general corresponence classes of diagonal curves in the
boundary of S, could be thought of as representing the ‘boundary’ of M . We can
define a topology on M+ = M1 ∪ M2 by requiring that a set of classes of curves
which intersect an open set in T (M), should be open in M+. Restricted to M1, this
topology will agree with that of M under the natural correspondence. Restricted to
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M2, it will be Hausdorff. However, it would not be Hausdorff on M+ if there were
partially or totally imprisoned geodesics in M which were incomplete. This is because
such a geodesic would seem to ‘vanish’ in a compact set and one could not add any
boundary point for such a geodesic which would be Hausdorff with respect to this
compact set.

M1 can be given a natural manifold structure induced from M . If M+ were
Hausdorff, it might be possible to extend this to M2 so that M+ could be regarded
as a paracompact manifold with boundary. This could be done for the Schwarzschild,
Reissner-Nordström, and Robertson-Walker solutions, M2 being three-dimensional in
the first and third cases and one-dimensional in the second. However, more realistic
solutions without exact symmetries might not have such well-behaved singularities as
these. Nevertheless, the above procedure would enable one to describe the singularities
and define a topological structure for them, even if not a manifold one.

6.5 Conclusion

The following seem to the author to be the important questions on singularities:

1. Not imposing any condition involving all points of spacetime other than that
the energy assumption should hold, are there solutions which evolve from a non-
singular state to an inevitable singularity and which are fully general in the sense
that a sufficiently small perturbation of the initial state would not prevent the
occurrence of the singularity?

This is answered affirmatively by Theorem 5, since a sufficiently small perturbation
of the metric in the neighbourhood of a compact slice with diverging normals would
leave the normals diverging.

2. Adopting the energy assumption, would there be a singularity in any solution
which could represent a universe?

This question cannot be settled finally until we have a rather fuller knowledge of the
nature of the universe. In fact, present observations do not completely rule out the
possibility that the universe could be asymptotically flat. However, the accumulated
weight of Theorems 1–5 would seem to indicate that a singularity would occur in
any solution which was in accordance with some form of the Copernican principle.
If one also adopted the strong causality assumption as being physically essential, a
fairly small extension of the present observations would enable one to test whether
the conditions of Theorem 6 would be satisfied in a solution representing the universe.

So far the constant λ in the Einstein equations has been assumed to be zero.
One might hope that, if it had some suitable value, singularities would not occur.
However, Theorem 2 does not depend on the value of λ, for what is required is that
RabK

aKb ≥ 0 for any null vector K, and this is satisfied if TabKaKb ≥ 0, no matter
what λ is. In the other theorems, the energy assumption would have to be replaced
by the condition that

TabW
aW b ≥WaW

a

(
1
2
T + λ

)
,

for any timelike vector W . In terms of the decomposition given before, this would
hold if

μ+ pi ≥ 0, μ+
∑

i

pi − 2λ ≥ 0.

In a Robertson-Walker solution, the second expression is just −3S̈/S, where S is
the scale factor of the universe. Observations of the present rate of change of the
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expansion of the universe indicate that, at the present time, 3S̈/S is probably negative
and, if positive, is certainly not more than fifty times the average density of observed
matter [Sandage 1961]. Thus the energy condition in the theorems would have been
satisfied if there had been a time in the past when the density was more than fifty
times the present value. There seems to be quite a lot of observational evidence that
this must have been the case. The conclusion therefore would seem to be that, even
if λ were nonzero, it could not prevent the occurrence of a singularity in solutions
representing a collapsing star, and it would probably not be large enough to cause
solutions representing the universe to ‘bounce’ without a singularity.

3. The theorems given above are pieces of mathematics. They have physical signifi-
cance only if the following are answered in the affirmative:
• Does the general theory of relativity provide a correct description of all possible

observations?
• Does the energy assumption hold?

Taking the second question first, the conservation equations for a perfect fluid give

μ̇+ (μ+ p)θ = 0.

Suppose that the density μ was positive initially. Then, as the flow lines converged,
μ could not become negative unless the pressure p became negative first. But if the
pressure decreased as the density increased, there would be mechanical instability. For
if a small region was compressed slightly, the pressure inside it would decrease and
so it would be compressed further by the surrounding fluid. Of course, the situation
is more complicated for an imperfect fluid with anisotropic pressures. Nevertheless, if
energy conservation holds in any form, it is difficult to see how matter which satisfied
the energy assumption at one time could fail to satisfy it at any other time.

There would still be the possibility that the energy assumption is not satisfied at
any time. This would be the case in the C field theory of Hoyle. Hoyle and Narlikar
[Hoyle 1964b] have shown that the C field could prevent the occurrence of singularities
in certain circumstances. However, it is not clear to the author that the C field
could prevent singularities in every situation, and the theory seems to suffer from the
difficulties with negative energy mentioned in Section 6.2.

For the above reasons, the author feels that it is likely that the energy assumption
holds. Returning to the first question, the general theory of relativity has so far been
experimentally tested only in very weak fields. However, a good physical theory should
not only correctly describe the currently experimental knowledge, but should also
predict new results which can be tested by experiment. The further the predictions
from the original experiments, the greater the credit to the theory if they are found to
be correct. Thus observations of whether or not singularities actually occurred would
provide a powerful test of the general theory of relativity in strong fields. Of course,
general relativity is a classical theory. Thus one could not expect it to be correct if
the curvature became so large that quantum effects had to be considered. Opinions
seem to differ as to whether this would happen when the curvature was 1014 cm or
when it was 1033 cm. In either case, it would be enormous compared to the value of
about 10−13 cm at the earth’s surface. For practical purposes, a region of such high
curvature could be regarded as a singularity.

In the case of a spherically symmetric, uncharged, collapsing star, all the matter
hits the singularity. However, the examples of the Reissner-Nordström and Kerr solu-
tions show that the addition of a small amount of electric charge or angular momentum
could completely alter the nature of the singularity, causing the matter to fall through
a ‘wormhole’ and emerge into another universe. Similarly, it would seem reasonable
to suppose that the singularity in the universe would not be the all-embracing kind
in the Robertson-Walker solutions, but might consist of isolated singularities which
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only a few worldlines hit. The author feels that the nature of the singularities to be
expected in realistic solutions is the problem on which most future research in this
field ought to be concentrated.

Appendix: The nature of a spatially homogeneous anisotropic
solution near the singularity

By Theorem 1, a solution which is exactly spatially homogeneous and in which the
strong energy assumption holds, will have a point of infinite density on each flow line
of the matter. Although such singularities are probably not very realistic physically,
it may nevertheless be of interest to study some of their properties. This could be
done by obtaining exact solutions. However, although a number of particular spatially
homogeneous solutions have been given [Heckmann 1962, Kantowski 1966], it has not
been possible to obtain analytic expressions for the general class of such solutions.
Instead, we shall give a number of properties which can be derived directly from the
deviation equation derived in Section 4:

d2A

ds2
= −G+ F ,

where A is the matrix representing the separation of neighbouring flow lines, G de-
pends on the Riemann tensor, and F on the acceleration of the flow lines.

Suppose the matter was a perfect fluid with zero pressure. Then F = 0 and we
have the vorticity conservation law

AT · ω ·A = const.

If the vorticity ω was nonzero, it would seem reasonable to suppose that the infinite
density arose through the flow lines converging along the axis of vorticity. That is to
say that, if the basis is chosen so that at s = 0,

ω =

∣
∣∣
∣
∣
∣
∣

0 0 0

0 0 ω

−ω 0 0

∣
∣∣
∣
∣
∣
∣
,

then as s→ 0, A would tend to ∣
∣
∣
∣∣
∣
∣

0 0 0

0 1 0

0 0 1

∣
∣
∣
∣∣
∣
∣
.

The vorticity conservation law then shows that ω remains finite as s → 0. We may
write A as O · S. Let a, b, c be the eigenvalues of S, where a → 0, b, c → 1 as s → 0.
Then,

θ =
1
abc

d
ds

(abc),

2σ2 =
1
a2

(
da
ds

)2

+
1
b2

(
db
ds

)2

+
1
c2

(
dc
ds

)2

− 1
3
θ2.

By the Raychaudhuri and conservation equations,

dθ
ds

= −2σ2 − 1
3
θ2 − 1

2
μ+ 2ω2, μ =

μ0

abc
, μ0 = const..
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Fig. A.1. Upper : A section u1, u2 constant showing the particle horizon in the u3 direction.
Lower : A section u2, u3 constant showing the absence of a particle horizon in the u1 direction

As s→ 0, the dominant term on the right of the Raychaudhuri equation will be

− 1
a2

(
da
ds

)2

.

Thus asymptotically, a is proportional to s and μ to s−1. This should be contrasted
with the behaviour of the Robertson-Walker solutions given in Section 3. In these, μ
was asymptotically proportional to s−2. This difference in time scale could have an
important effect on processes in the early stages of the universe, such as the production
of helium [Hawking 1966d].

The above calculation did not depend on spatial homogeneity. Thus it should hold
whenever the flow lines of pressure-free matter converge in one direction. This case
would seem to be more general than that in which they converged in two directions
simultaneously.

In a spatially homogeneous solution, this difference in time scale can have another
important effect. Consider, for example, the solution with metric

ds2 = dt2 − a2(t)
(
du1
)2 − b2(t)

(
du2
)2 − c2(t)

(
du3
)2
,

where the curves u1, u2, u3 constant are the flow lines of the pressure-free matter and
a → t, b, c → 1 as t → 0. A past-directed null geodesic from a point p could attain
infinite values of the coordinate u1, but only finite values of the coordinates u2 and
u3. Thus an observer at p could see all the flow lines in the u1 direction, but only a
finite number in the u2 and u3 directions. In other words, p has a particle horizon in
the u2 and u3 directions, but not in the u1 direction. This is illustrated in Figure A.1,
which shows Penrose diagrams of the two-dimensional sections u1, u2 constant and
u2, u3 constant. This might be important for astrophysics as it is the existence of
a particle horizon in every direction which severely limits the instabilities which can
occur in a Robertson-Walker solution [Hawking 1966b].

To assume that the pressure is zero is hardly justified near the singularity. It is
more likely that the matter will obey the relativistic equation of state p = μ/3. Then
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the vorticity conservation law becomes

μ1/2AT · ω ·A = const.

If we assume as before that the flow lines converge along the axis of vorticity, we
have the rather surprising result that ω → 0 as μ → ∞. If the solution is spatially
homogeneous and the flow lines are orthogonal to the surfaces of homgeneity (this is
possible only if the vorticity is zero), the acceleration of the flow lines will be zero.
Then the asymptotic form of the eigenvalues of the matrix S will be the same as
before and the density μ will be asymptotically proportional to s−4/3. Thus in this
case also there would be no particle horizon in the direction in which the flow lines
are converging.
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