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Abstract. The 1914 experiment of James Franck and Gustav Hertz provided a graphic demonstration of
quantization properties of atoms, thereby laying the foundations of modern atomic physics. This article
revisits the experiment on the occasion of its Centenary, compares traditional and modern interpretations,
and focuses in particular on the link between microscopic processes, which are governed by the laws of
quantum mechanics, and macroscopic phenomena as measured in the laboratory. A goal is to place the
physics underlying the operation of the Franck-Hertz experiment within the context of contemporary
gaseous electronics, and to that end we reach back even further in time to the 1872 kinetic equation of
Ludwig Boltzmann. We also show how the experiment can be modelled using fluid equations and Monte
Carlo simulation, and go further to show how non-local effects, resonances and striations in plasmas have
much in common with the electron physics in the drift region of the Franck-Hertz experiment.

1 Introduction

1.1 The Franck-Hertz experiment and modern
atomic physics

The famous late nineteenth and early twentieth century
experiments based on investigations of electrical currents
in gases laid the foundations of modern physics [1–3],
and pre-eminent among these is the seminal experiment
of Franck and Hertz [4], the subject of the present re-
view and of a recent shorter article [5]. The results of the
experiment (see Figs. 1 and 2) were reported 100 years
ago, and are generally regarded as confirming the model
of the atom which Bohr had proposed a year earlier. The
experiment is traditionally considered in the context of
single-scattering atomic collision physics, with scant re-
gard paid to the statistical mechanics necessary to de-
scribe the behaviour of many electrons undergoing many
collisions with gas atoms, en route from the cathode to
the anode. In particular, the periodic structures which de-
velop in the drift region, which are key to the operation of
the experiment, must be more carefully analysed in order
to be able to correctly interpret the experiment. These
structures are in fact similar in origin to the “luminous
layers” observed firstly by Holst and Oosterhuis [6], and
subsquently by others [7–10], including an investigation by
Fletcher and Purdie [11,12] in a Steady state Townsend ex-
periment. However, a thorough understanding of the basic
physics of these periodic structures has emerged only re-
cently, through the kinetic theory of gases, allowing the
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Fig. 1. Schematic representation of the Franck-Hertz experi-
ment, with the gas under investigation filling the region be-
tween plane-parallel electrodes. Electrons emitted from the
source S move under the influence of a uniform field E = U/d
in the region 0 � z � d between cathode and grid. Beyond the
grid at z = d the retarding voltage UG allows only electrons
with energies above eUG to contribute to the anode current
IA. The voltage U is increased and the resulting IA-U curve
is recorded, as in Figures 2 and 4 for Hg vapour and Ne gas,
respectively.

Franck-Hertz experiment to be finally interpreted rigor-
ously after almost 100 years. The details are reported in
this colloquium.

At the outset we emphasise that the classic Franck-
Hertz apparatus involves the passage of low current, low
density electrons through a gas, and may therefore be
categorised as a “swarm” experiment [1,13–16]. No space-
charge or plasma effects are apparent, and the operation
of the experiment is underpinned by “natural” or “free”

http://www.epj.org
http://dx.doi.org/10.1140/epjd/e2014-50342-9


Page 2 of 20 Eur. Phys. J. D (2014) 68: 188

Fig. 2. The current-voltage characteristic for Hg vapour re-
ported by Franck-Hertz experiment [4] for which the voltage
difference between peak currents is ΔU = 4.9 V.

oscillations of average electron properties. On the other
hand, periodic electron structures called “striations” arise
from a synergy between “natural” or “Franck-Hertz” os-
cillations and plasma effects, due to the presence of both
ions and electrons, and are ubiquitous in gas discharges
at higher currents [3,17–25]. The picture is complicated
by a spatially varying, self-consistent space charge field,
in contrast to the externally imposed, constant field in
the Franck-Hertz experiment. The phenomenon was first
reported over 170 years ago by Abria [17] (and perhaps
observed even earlier by Michael Faraday [3]) and is con-
sidered to have inspired the subsequent ground-breaking
experiments involving gas discharges, which in turn led to
the era of modern physics. It is therefore ironic to note
that while physics per se has made enormous strides in
the past century, a complete understanding of striations
is still lacking. We shall return to this theme in the closing
stages of this paper.

Nowadays the Franck-Hertz experiment is available
off-the-shelf commercially. It has been de rigueur in the
undergraduate laboratory for several generations of physi-
cists, who have been raised on the highly simplified
explanations of standard textbooks [26,27] and, nowadays,
innumerable internet web sites. While the wider physics
community has, possibly for this reason, tended to regard
the experiment as being useful for pedagogical purposes
only, it has been realised recently [28] that there is still
much basic physics to be investigated, e.g., the effect of
elastic (e, Hg) collisions [29,30]. On the occasion of the
Centenary of the Franck-Hertz experiment we feel it is
only appropriate to explore the true extent of the physics
it reveals.

Before embarking on the main task, however, it is help-
ful to add some historical context.

1.2 Historical and biographical notes

James Franck [31,32] and Gustav Hertz [33] commenced
their collaboration in 1911 in Berlin, and for the next three

years investigated the interactions of slow electrons with
neutral gases [34]. They were aiming at a “general kinetic
theory of electrons in gases”, as Franck did not agree with
Townsend’s explanation of electron scattering processes in
gas discharge drift tubes. Franck and Hertz improved on
existing experimental methods, which were used, amongst
others, by Philipp Lenard for investigating the properties
of cathode rays in low density gases. This ultimately led
to the 1914 seminal investigation in mercury vapour [4]
which is commonly referred to as the “Franck-Hertz exper-
iment”, although variations do exist [35,36]. The results
were first interpreted as an indication of the ionisation
voltage of mercury vapour, but from a subsequent experi-
ment measuring light emission, they concluded that it was
in fact a determination of an excitation level of the mer-
cury atom. For their experiment, which provided a graphic
illustration of the quantisation of atomic energy levels,
Franck and Hertz received the 1925 Nobel Prize [37]. Brief
biographies follow.

James Franck [31,32] was born in Hamburg in 1882,
and lived in the neighbourhood of the present University
of Hamburg. He first went to Heidelberg to study law,
switched to science and mathematics, and then transferred
to the Friedrich-Wilhelms-Universität of Berlin, where he
obtained a doctorate in experimental physics in 1906. It
was here that he teamed up with Gustav Hertz, also orig-
inally from Hamburg, to carry out their seminal experi-
ment of 1914, which, as noted above, brought them the
1925 Nobel Prize for Physics. By then he was established
as Professor of Physics at the University of Göttingen,
where he led a vibrant and very influential department.
However he subsequently left Germany for the USA. He
is also well known for the Franck-Condon principle, and
for his views on the use of atomic weapons. He died in
Göttingen in 1964.

Gustav Hertz [33], a nephew of Heinrich Hertz, was
born in Hamburg in 1887. He studied physics and math-
ematics in Göttingen, Munich and at the Friedrich-
Wilhelms-Universität in Berlin where he finished with his
doctoral thesis in 1911. At the physics institute in Berlin
he met James Franck, and together they started work on
a series of measurements which ultimately led to the fa-
mous experiment described in this article. Hertz habili-
tated in 1917 and he became a professor at the Universi-
ties of Halle, Berlin and finally Leipzig. He also worked at
several industrial research laboratories, notably Philips1
and Siemens. Hertz retired in 1961 and died in 1975 in
Berlin.

Ludwig Boltzmann (1844–1906) [39] also figures promi-
nently in this article, through his famous 1872 kinetic
equation [40,41], which to this day underpins the anal-
ysis of many non-equilibrium systems, and which is

1 The Natuurkundig Laboratorium der N.V. Philips Gloeil-
ampenfabrieken, Eindhoven, Holland, was one of the lead-
ing industrial research laboratories in the world, in partic-
ular in the field of gas discharges during the first half of
the 20th century [38]. The significant work of Holst, Ooster-
huis, Druyvesteyn and Penning [7–9] was performed at this
laboratory.
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eminently suitable for understanding electron properties
in the Franck-Hertz drift tube. Note, however, that there
is no evidence that Franck and Hertz were significantly
influenced by Boltzmann’s ideas at the time of their ex-
periment, even though one of Franck’s early collaborators
in Berlin was Lise Meitner, who had been a student of
Boltzmann in Vienna.

1.3 Related physical phenomena and experiments

The Franck-Hertz experiment provides a graphic illustra-
tion of the quantisation of atomic energy levels, through
the generation of an oscillatory anode current in an exter-
nal circuit including a control grid in front of the anode
(Fig. 1). This external periodic behaviour reflects an in-
ternal periodic electron structure within the drift tube, of
whose physical origins are in fact similar to those observed
in other experimental arrangements:

(a) If the grid in front of the anode in Figure 1 were
removed, the apparatus could be thought of as a
type of steady state Townsend “swarm” experiment,
and as such, contact can be usefully made with
the swarm physics literature [1,13–16]. Fletcher and
Purdie [11,12] have pointed out that periodic struc-
tures in such low current, low pressure discharges
have long been known [6,7,10,42–44], dating back to
the 1920s. They employed the photon flux technique
to observe periodic electron properties in several no-
ble gases, directly and non-intrusively. Fletcher also
showed that the oscillations were damped through the
addition of only a few per cent molecular gas, and
concluded that a sufficiently large gap between the
ground state and the first excited states is required
to produce oscillations. This is also the reason why
the Franck-Hertz experiment is considered to operate
satisfactorily only with monatomic gases (there are
exceptions, which we shall discuss later).

(b) A number of articles in the modern low temperature
plasma literature dealing with spatial inhomogene-
ity [45–53] report on damped periodic structures. The
work of Winkler and collaborators [48–50] has demon-
strated pronounced sensitivity to E/n0 (the ratio of
the field to the gas number density), and has shown
that it is only in a “window” of intermediate fields
that periodicity is observed. The explanation given in
reference [50] essentially follows the classical Franck-
Hertz argument (without acknowledging the connec-
tion) and also confirms Fletcher’s suggestion [11] that
increasing the number of inelastic channels enhances
damping. Reference [50] is particularly noteworthy for
introducing a “multiterm” analysis of Boltzmann’s
equation capable of dealing with spatial inhomogene-
ity, in contrast to the severe limitations which many
authors place on their work by unnecessarily limiting
the representation of the electron velocity distribu-
tion function to the first two terms of an expansion in
spherical harmonics. It is to be emphasised that while
references [47–50], and others, go on to deal with in-
homogeneous fields and space charge phenomena, this

is not in any way connected with the effects we are
presently discussing.

(c) A modern view [54] is that all swarm experiments
can be analysed from a common standpoint, in which
a generalised eigenvalue equation, deriving from the
Boltzmann equation, and an associated “dispersion
relation”, furnish all quantities of physical interest.
If, as we argue, the Franck-Hertz experiment can be
thought of as belonging to the steady state Townsend
category, then the full weight of modern eigenvalue
theory [54,55] can be brought to bear. This is most
useful for dealing with the asymptotic region far
downstream from the source, where the eigenvalue
with the lowest real part controls the spatial structure,
but the full profile can also be calculated by numerical
solution of the Boltzmann equation [30,56].

It is evident that in reviewing the classic Franck-Hertz ex-
periment we can profitably link together several seemingly
disparate strands of the literature, both modern and tra-
ditional, and at the same time discuss some very rich and
interesting physical phenomena.

1.4 Structure of this review

In Section 2 we review the experiment and the traditional
interpretation of results for both Hg and Ne, and also look
at periodic structures directly measured in a steady state
Townsend experiment with Ne. Section 3 outlines the the-
oretical requirements needed to interpret the experiment
and in Sections 4 and 5 we discuss the Boltzmann equa-
tion and fluid equation analysis, respectively. Numerical
calculations are given for a simple cross section model in
the first instance, and then with real cross section models
for mercury vapour and neon gas, the latter using a Monte
Carlo simulation. In Section 6 we give a brief discussion of
non-local effects and resonances with Franck-Hertz waves,
and conclude by returning to the subject of striations,
which we regard as the progenitor of gas discharge exper-
iments.

2 The experiment

2.1 Apparatus and original results

Figure 1 shows a schematic representation of the ex-
periment in plane parallel geometry, which is nowadays
favoured over the cylindrical arrangement originally used
by Franck and Hertz. Electrons are emitted at a steady
rate from the cathode into a drift tube containing an
atomic gas of number density n0, and are scattered in col-
lisions with gas atoms (both elastic and inelastic) as they
fall through a voltage U over a distance d to the control
grid. The retarding voltage UG applied between grid and
anode allows only higher energy electrons to contribute to
the measured anode current IA. An oscillatory IA-U curve
is observed, and the spacing between peaks, designated by
ΔU , is supposed to be directly related to some quantised
atomic energy level.
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The results of the original experiment using mercury
vapour published in 1914 are shown in three different IA-U
curves in reference [4], with the best known of these re-
produced in Figure 2, showing ΔU ≈ 4.9 V.

As already mentioned, Franck and Hertz initially inter-
preted this as the ionisation potential of a mercury atom,
but after a subsequent experiment they concluded that
their result indicated an electronic excitation level of en-
ergy εI = eΔU = 4.9 eV. In addition, they observed that
radiation emitted from excited atoms returning to their
ground state had a wavelength λ = 253.6 nm. This, to-
gether with εI = hc/λ, could be used to either: (i) confirm
the measured value of εI , or (ii) provide an independent
estimate of Planck’s constant h.

At first Franck and Hertz were not aware of the Bohr
model, and only appreciated the full implications of their
results several years later, in what was in fact their last
joint publication [57]. On the other hand Bohr himself
realized already in 1915 the importance of the Franck-
Hertz experiment as confirming his quantised model of
the atom [58].

2.2 The traditional model

Within a certain range of voltages and gas pressures the
mean electron energy profile ε(z) is oscillatory in the
drift region between cathode and grid. Such a spatially
periodic structure is a macroscopic reflection of atomic
quantisation and, while observed directly in other experi-
ments [11,12], it is usually modelled somewhat crudely for
the Franck-Hertz experiment. Thus the traditional text-
book model has each electron starting from rest at the
cathode, and accelerated by the electric field E = U/d
until it achieves sufficient energy to excite a gas atom to
some quantised energy level εI . The electron then gives
up all its energy abruptly in an inelastic collision, and is
again accelerated from rest to energy εI , when it is once
more brought to rest in a collision, and so on. The aver-
age electron energy ε(z) (which is the energy of each and
every electron in this model viz., a unidirectional monoen-
ergetic electron “beam”) thus fluctuates as a function of
the distance z downstream from the source in a sharp,
“saw tooth” fashion with spatial period Δz = εI/eE.

The text book model goes on to say that as U (and
therefore E) is increased, Δz decreases, i.e., the pattern
shrinks, and the electron energy at the grid ε(d) rises and
falls accordingly. If ε(d) > UG, electrons can pass to the
anode, and hence the anode current IA should rise and
fall as U increases.

Since an increase in voltage of

ΔU = εI/e (1)

produces exactly one more additional internal oscillation,
this must be the voltage separation between current peaks.
This result is actually valid for any oscillatory profile ε(z),
not just the saw tooth model of the textbooks, though as
we shall see, the energy wavelength εI = eEΔz will not in
general correspond exactly to a quantised atomic energy
level.

Table 1. Threshold energies and approximate maximum cross
sections for excitation of Hg to the energy levels shown by
inelastic collisions (two numbers indicate two peaks of the cross
section as seen in Fig. 3).

J Process
Threshold Maximum cross section

(eV) (10−20 m2)

0 6s6p 3P0 4.67 0.4/0.5
1 6s6p 3P1 4.89 3.5/5.0
2 6s6p 3P2 5.46 4.0
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Fig. 3. The momentum transfer cross section σm and three
inelastic cross sections σI for electron scattering from mer-
cury [29,59]. See Table 1 for an explanation of notation.

2.3 Experimental results and questions
of interpretation

2.3.1 Mercury

The textbook interpretation of Figure 2 suggests the Hg
atom therefore has a quantised energy level of 4.9 eV.
This is indeed close to 4.89 eV, the energy of the second
quantised state (the 6 1S0 → 6 3P1 transition), but the
first quantised level of Hg, for which εI = 4.67 eV (the 6
1S0 → 6 3P0 transition – see Tab. 1) seems to be bypassed.
Since this lowest level is metastable, one would not expect
to see any corresponding spectral emission line, but why
should it not affect the IA-U curve? The question was
addressed by Hanne [59], who pointed out that the cross
section for excitation of the first excited level of Hg is
small (see Tab. 1 and Fig. 3).

One must look further, however, to understand why
the 6 1S0 → 6 3P2 process, with threshold en-
ergy 5.46 eV, does not appear to significantly influence
the measurement.

2.3.2 Neon

The experimental apparatus for neon is readily available
commercially “off the shelf” from Leybold Didactic2. The

2 http://www.ld-didactic.de/literatur/hb/e/p6/

p6243_e.pdf
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Fig. 4. Measured Franck-Hertz IA-U curve for neon using a
Leybold Didactic GmbH apparatus.

Fig. 5. Energy level diagram for neon (solid lines), experimen-
tally measured values of εI (dashed lines) from photon flux
experiment (PF), Franck-Hertz experiment (FH) and theoret-
ically calculated value of εI from Boltzmann equation analysis
(dotted line).

measured current-voltage characteristic is shown in Fig-
ure 4 which, together with the text book model, suggests
that the neon atom has an energy level εI = eΔU ≈
18 ± 1 eV. Even if this were taken as a reflection of the
3S1 level of energy 18.4 eV alone (and we do not believe
this is the case), the same question would arise as for Hg:
why should the experiment appear to register excitation
of one particular level, and bypass others (see Fig. 5)? An
inspection of the (e, Ne) cross section data, shown in ab-
breviated form in Table 2, shows why we cannot use the
same argument as for Hg to dismiss the effects of other
inelastic channels. Hence we must look for another inter-
pretation of the measured value of εI .

The laboratory manual accompanying the Leybold ap-
paratus at least acknowledges the problem, and suggests
that an element of “probability” comes into play. In phys-
ical terms, this means that the cross sections for each of
the possible processes must be accounted for.

Table 2. Threshold energies and approximate maximum cross
sections for excitation of neon to the energy levels shown by
inelastic collisions [60]. See Figure 11 for the detailed electron
– neon cross-sections.

Process
Threshold Maximum cross section

(eV) (10−20 m2)

2p53s 3P2 16.62 0.01
2p53s 3P1 16.67 0.012
2p53s 3P0 16.72 0.0024
2p53s 1P1 16.85 0.12
2p53p 3S1 18.38 0.033
2p53p 2P 18.97 0.026
2p54s 2S 19.66 0.033

2.3.3 Argon

Recently Magyar et al. [61] have described a Franck-Hertz
experiment in argon gas, with electrons generated by pho-
toemission at the source, instead of the usual thermionic
emission. An important feature of the experimental ar-
rangement is the ability to vary gas pressure (from 25
to 400 Pa), a facility in common with swarm experiments,
and which has an effect similar to varying the length of
the drift region [13–16]. At the highest pressure, electrons
arrive at the grid with minimal residual memory of the
source, and the current reflects the intrinsic properties of
the gas atoms, as desired. This is discussed in more detail
in Section 4.3. From their figure 3e, for which gas pressure
is highest, and the waveform most regular, we estimate
that ΔU = 12 ± 1 V. From their figure 5g, which shows
the calculated mean energy within the drift region as a
function of position, we estimate the energy wavelength
to be εI = eEΔz ≈ 12 eV, which is consistent with equa-
tion (1). As observed for neon, the measured value of εI

does not appear to correspond to any single energy level
of an argon atom [62].

2.4 A critical re-examination of the basic physics
in the drift region

The fundamental question which has emerged is this:
How is the value of εI measured in the Franck-Hertz

experiment to be interpreted in terms of the quantised en-
ergy levels of the atoms comprising the gas?

The answer requires a review of the basic physics of
electrons in the drift region.

Firstly, note that elastic scattering is important, e.g.,
the elastic momentum transfer cross section in Hg is enor-
mous (∼50 times the magnitudes of the inelastic cross-
sections – see Fig. 3), and electrons in the drift region
therefore may make many elastic collisions before excit-
ing an atom in an inelastic collision. There are two main
effects:

(i) Elastic collisions randomise the directions of electron
velocities, and hence the electron velocity distribution
function f(z, v) is nearly isotropic in the drift region;
and

http://www.epj.org
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(ii) Although electrons exchange (i.e., lose or gain) only a
small fraction ∼2m/m0 of energy in elastic collisions
with atoms of a much larger mass m0, the net effect
after many such collisions is to create a large spread
of energies about the mean energy.

Thus in the drift region of a Franck-Hertz experiment,
f(z, v) is both broad in energy and nearly isotropic in ve-
locity space [30]. Electrons behave like a swarm [1,13–16],
quite the opposite of a unidirectional, mono-energetic
beam, as the textbook model would have us believe. This
means that several inelastic channels may be open simul-
taneously, and that the measured value of εI can be ex-
pected to reflect a number atomic energy levels, weighted
by the electron energy distribution function.

2.5 Direct observation of periodic structures

Periodic electron structures have for long been known in
gaseous electronics, but the Franck-Hertz experiment is
not normally considered to be part of this literature, in
spite of some clear connections. Thus the steady state
Townsend (SST) “swarm” experiment [1,11–13], can be
thought of as representing the drift tube region of Fig-
ure 1, where atoms are excited by electron impact. How-
ever, there is no grid and no measurement of currents in
an external circuit. Instead, Fletcher [11] and Fletcher and
Purdie [12] investigated the spatial profile of electrons in
noble gases directly and non-intrusively by measuring the
intensity of photons emitted in de-excitation of atoms, in
the so-called “photon flux technique”.

2.5.1 Neon

Profiles obtained for neon in reference [12] are reproduced
in Figure 6, from which the authors estimated the en-
ergy wavelength to be εI = eEΔz ≈ 18.5 eV. This con-
trasts with the indirect determination of εI ≈ 18 eV
from the Franck-Hertz experiment (see Figs. 4 and 5),
which may also suffer from the intrusive effect of the grid.
Of course, the wavelengths measured in the two experi-
ments are not expected to coincide exactly, since the pho-
ton flux technique does not reflect excitation of atoms to
metastable states, whereas the Franck-Hertz measurement
includes the effects of all collision processes. Note that all
quantities in both experiments depend upon the electric
field E = U/d and the gas number density n0 through
the reduced field E/n0 (units 1 Townsend = 1 Td =
10−21 V m2).

Fletcher and Purdie discussed their results in terms of
quantised energy levels of the neon atom (Tab. 2), and
concluded that some weighting of the respective cross sec-
tions would be required in order to explain the measured
energy wavelength of εI = 18.5 eV.

2.5.2 Argon

A similar conclusion can be reached for argon, where
Fletcher’s measured value of εI = 13.0 eV [11] does not

Fig. 6. Measurements of photon flux as a function of inter-
electrode distance z arising from de-excitation of atoms in a
steady state Townsend discharge with neon, for a reduced elec-
tric field E/n0 = 30.4 Td. Gas pressures are (a) p = 266 Pa and
(b) p = 254 Pa (after Fletcher and Purdie [12], http://www.
publish.csiro.au/nid/78/paper/PH870383.htm, reproduced
with the permission of CSIRO).

correspond to any single atomic energy level. It is interest-
ing to note that this is consistent with the voltage wave-
length ΔU ≈ 12 ± 1 V which may be extracted from the
Franck-Hertz IA-U data of Magyar et al. [61] for argon,
as well as the energy wavelength εI = 12 eV of their sim-
ulated periodic structures in the drift region.

2.5.3 Helium

References [11,12] detail observations of periodic struc-
tures in helium, but we have not been able to find any
reports in the literature on a conventional Franck-Hertz
experiment using this gas.

As with the Franck-Hertz experiment, the same fun-
damental question emerges: How do we connect measured
wavelengths ΔU and εI in the Franck-Hertz and SST ex-
periments respectively, with atomic energy levels? The
prescription is provided by rigorous theoretical analysis
and is, as we shall see, the same for both experiments.

3 Preliminary theoretical considerations

3.1 Options for a theoretical description

3.1.1 Mean free path analysis

Although there have been attempts to analyse the Franck-
Hertz experiment in terms of mean free paths [63], this
approach is too crude to be of much help. As with modern-
day analysis of electron and ion swarms, it is more produc-
tive to use momentum transfer theory [64,65]. This forms
the basis of the fluid equation approach discussed more
fully in Section 5.

http://www.epj.org
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3.1.2 The diffusion equation

Many electron and ion drift tube experiments [1,13–16]
operate in the hydrodynamic regime [66], and may be
characterised by mobility and diffusion coefficients, μ and
DL, respectively. These experiments may then be anal-
ysed using the diffusion equation, which for plane parallel
geometry is:

(
∂t + μE ∂z −DL∂

2
z

)
n = 0, (2)

where n(z, t) is the electron number density at position z
and time t. However, in both the Franck-Hertz and SST
experiments, a steady state exists, i.e., ∂tn = 0, and it is
straightforward to show that equation (2) has completely
unphysical solutions (see also p. 171 of Ref. [65]), and oth-
erwise has no chance of explaining the formation of peri-
odic structures in the drift region of Figure 1. This simply
reflects the fact that these experiments are inherently non-
hydrodynamic, and that another means of analysis must
be sought.

3.1.3 Boltzmann equation solution

In Section 4 we show how the methods of non-equilibrium
statistical mechanics may be applied to the Franck-Hertz
and SST experiments. Specifically we solve Boltzmann’s
kinetic equation in phase space [40,41,64–66] for the elec-
tron phase space distribution function f(z, v). Properties
of physical interest then follow as velocity averages, and
the procedure furnishes a complete and rigorous descrip-
tion of electron periodic structures in the drift region.

3.1.4 Monte Carlo simulation

In gaseous electronics, Monte Carlo simulation is a
popular alternative to solving the Boltzmann equa-
tion [12,60,61] (it is interesting to note that there is a
school of thought which equates Monte Carlo simulation
with solving the Boltzmann equation, but our view is
that the two approaches are quite distinct). The method
is particularly effective in dealing with boundaries and
realistic geometry, which is usually the case with non-
hydrodynamic discharges. These may pose difficulties for
solution of the Boltzmann equation. The disadvantage of
the Monte Carlo approach is that it can be very time-
consuming.

3.1.5 Fluid modelling

Both Boltzmann equation solutions and Monte Carlo sim-
ulations offer a rigorous means of analysis, but are com-
putationally intensive and in the case of the latter, of-
ten time-consuming. Neither is particularly conducive to
physical insight. Fluid modelling [67,68] on the other hand
offers an alternative physically tenable, semi-quantitative,
macroscopic description through three balance (or “mo-
ment”) equations, for number density n, average velocity
v and average energy ε. These equations are generated by

taking appropriate velocity moments of Boltzmann’s ki-
netic equation, followed by approximation of the collision
terms, e.g., through momentum transfer theory [64,65],
along with an appropriate ansatz to close the system of
moment equations. Application of these equations to the
Franck-Hertz drift region gives a good estimate of the
wavelength Δz of the observed periodic structures [67].

3.2 Why the experiment seems to select only certain
energy levels

Full details of the fluid model will be given in Section 5
and, as we shall see, the effect of inelastic collisions enters
into the energy balance equation through the quantity

Ω(ε) =
m0

2mσm(ε)

∑

i

εiσi(ε) exp
(
−3εi

2ε

)
(3)

which is a function of the mean electron energy ε, and
the threshold energies and cross sections for excitation of
atomic levels, εi and σi, respectively (see Tabs. 1 and 2 for
Hg and Ne, respectively, and Ref. [62] for the correspond-
ing Ar data). The influence of any level i for which σi is
small may be neglected in the sum, while the exponential
term acts to suppress the influence of higher levels, for
which εi > ε. As the applied voltage U (and hence E/n0)
increases, ε also increases, allowing higher threshold in-
elastic channels to contribute to equation (3). However,
as discussed in Section 5, the influence of higher levels is
suppressed because of a complex interplay between elas-
tic and inelastic processes, and the periodic structure ac-
tually disappears above a certain critical value of E/n0

(about 30 Td for Hg) [67]. Then the energy profile ε(z)
becomes monotonic, not oscillatory, and the experiment
yields no further useful information.

These two reasons explain why the dominant contribu-
tion to the Franck-Hertz experiment with Hg comes from
only the second excited level with energy 4.89 eV:

(i) The lowest level 4.67 eV is indeed excited, but at a
negligibly small rate.

(ii) Even though the third level 5.46 eV may contribute
to equation (3) at sufficiently high voltages U , the
oscillatory “window” of operational E/n0 has by then
closed.

For Ne, the situation is even more complicated. No single
inelastic process dominates (see Tab. 2) and, while equa-
tion (3) offers some qualitative insight into the way these
processes might be weighted, a quantitative assessment is
best left to the more rigorous kinetic theory analysis.

3.3 Internal periodic structures vs. the external
current-voltage curve: the essence
of the Franck-Hertz experiment

We focus on the drift region between cathode and grid
because:

(a) this is where quantum effects at the atomic scale be-
come manifest through the formation of macroscopic
periodic structures;
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(b) this is also where the electron physics remains poorly
understood, often misrepresented and trivialised;

(c) one must fully understand these periodic structures,
not only in order to be able to interpret the ex-
perimental results, but also to prescribe satisfactory
operational conditions, e.g., where to place the grid
relative to the cathode and the range of operational
voltages and gas pressures; and

(d) the formation of periodic structures lies at the
heart of both the Franck-Hertz experiment and the
SST experiment of Fletcher and Purdie [11,12]. The
method of observation of these structures, either in-
directly (and intrusively) through the agency of a
grid plus retarding field, and projection onto an ex-
ternal current-voltage characteristic, or directly (and
non-intrusively) through the photon flux technique,
respectively, is quite another matter;

(e) while the experiment furnishes a current-voltage curve
over a wide range of voltages, the main interest is con-
fined to its periodicity, the peak to peak voltage dif-
ference ΔU . The required atomic properties may then
be interpreted via the simple relation equation (1),
as reasoned previously. The arguments are developed
further below;

(f) the full current-voltage curve may well provide ad-
ditional information, but its detailed shape is influ-
enced by the properties of the grid and the rather
complex fields which develop in its vicinity [69]. Since
one wishes to measure the properties of the gas atoms,
rather than the apparatus which is used to make the
measurements, the value of generating the full curve
theoretically appears to be very limited, especially
when the high computational cost is considered [61].

3.3.1 Position of the grid

All these considerations aside, we emphasise that the grid,
even if it were to operate ideally and non-intrusively, must
be placed far enough downstream from the cathode, so
that any “memory” of source properties, specifically, the
unknown initial distribution of electron velocities, should
be “forgotten”. Moreover, as Sigeneger et al. [69] point
out, the field structure in the neighbourhood of the grid
is really quite complex, so it is something of an idealisa-
tion to assume that a uniform field exists over the entire
cathode-grid region. In swarm experiments [1,13–16], ei-
ther the distance of the detector from the source or the gas
pressure is increased until measurements become length or
pressure independent, indicating that source and “end”
effects are negligible. Apart from reference [61], however,
Franck-Hertz experiments do not usually have this flexi-
bility, and there is the possibility that both the internal
wavelength Δz and peak-to-peak voltage difference ΔU
may be “contaminated” by the source or end effects.

3.3.2 Anode current model

With these considerations in mind, we assume for present
purposes that:

(i) voltages and gas pressures are such that E/n0 =
U/dn0 falls within the operational window for pe-
riodic structure formation;

(ii) the grid operates non-intrusively;
(iii) the grid is located in the asymptotic region, suffi-

ciently far downstream from the source so that any
memory of initial conditions is negligible; and hence

(iv) properties of the electrons at the grid are determined
only by electron-atom scattering properties; and

(v) at any given voltage U , the anode current IA is de-
termined only by the properties of the electrons at
the grid.

In our model, the current is assumed to be a monotonic
increasing function of the mean energy ε(d;U) at the grid,
if this exceeds the retarding potential, and zero otherwise,
i.e.,

IA(U) = F [ε(d;U)], if ε(d;U) > eUG

= 0 if ε(d;U) � eUG. (4)

However, we do not need to know any detailed property
of the function F . It is also implicit that the energy wave-
length εI = eUΔz/d of the periodic structure is a con-
stant, independent of U , something which is investigated
further in Section 4. Increasing the voltage thus reduces
Δz, the pattern shrinks overall, and ε(d;U) is an oscilla-
tory function of U . In particular if, the voltage increase
ΔU is prescribed by equation (1), exactly one more oscilla-
tion is introduced into the drift region. Hence if the mean
energy at the grid was originally a maximum at voltage
U , then it is also a maximum at U + ΔU . Equation (4)
then implies the same for the anode current, i.e., the peak-
to-peak voltage difference in the external current-voltage
characteristic is related to the internal energy wavelength
by eΔU = εI , effectively equation (1).

Of course, apart from the question of how closely the
actual experiment approximates this idealised behaviour,
it remains first and foremost a priority to understand just
how εI is related to the atomic energy levels. This is ad-
dressed in the next two sections.

4 Rigorous kinetic theory analysis

4.1 The distribution function and Boltzmann
kinetic equation

The electron phase space distribution function f contains
all the information required to explain the behaviour of
electrons in the drift region, but how do we obtain it? We
cannot simply assume it to be a delta function in v-space
(the unphysical text book description), or take it to be
a Maxwellian, since the electrons in a Franck-Hertz drift
tube are driven far from equilibrium by the electric field.
In fact, the only way to obtain f is by solving a kinetic
equation, which is a balance (or continuity) equation in
phase space. For electrons in the plane parallel geometry
of Figure 1 it can be written as:

∂tf + vz ∂zf + a ∂vzf = −J(f), (5)
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where J(f) is the net rate of scattering out of a phase
space volume element due to collisions between electrons
and atoms, and a = eE/m is the acceleration suffered by
an electron of charge e, mass m, due to the action of the
electric field.

An expression for J(f) for elastic electron-atom colli-
sions can be obtained directly from the classical collision
operator proposed by Boltzmann in 1872, which incorpo-
rates his famous collision hypothesis (“Stosszahlansatz”),
and which introduced the arrow of time [40,41].

The classical Boltzmann collision operator was gener-
alized by Wang-Chang et al. [70] to include inelastic col-
lisions, in this case, collisions where an electron excites
an atom from quantum state j to k, with corresponding
atomic energy levels εj and εk. The Boltzmann-Wang-
Chang et al. collision operator for electron-atom scatter-
ing is [65]

J(f) =
∑

j,k

∫
[f(z,v)f0j(v0) − f(z,v′)f0k(v′0)]

× gσ(jk; gχ)dĝ′dv0, (6)

where dashes denote post-collision properties, quantities
with subscripts “0” pertain to the atoms, and g = v − v0

is the relative velocity of an electron and an atom. The
differential cross section for the process

j, v, v0 → k, v′, v′
0

involving scattering into the solid angle dĝ′ = 2π sinχdχ,
is denoted by σ(jk; gχ), where χ is the scattering angle.
An elastic collision corresponds to the case where the in-
ternal state of the atom remains unaltered, i.e., j = k.

The gas is assumed to be in equilibrium at tempera-
ture T0, and hence f0j(v0) is a Maxwellian distribution
over velocities v0, and a Boltzmann distribution over in-
ternal states j. For the gases used in a typical Franck-
Hertz experiment, the energy levels and temperatures are
such that kBT � εk, and hence virtually all atoms are
initially in the ground state, j = 0, εj = 0. Thus, for prac-
tical purposes, the threshold energy for excitation of an
atom to state k is simply the energy εk of the final state.

The procedure then is to substitute equation (6)
into (5), which for the steady state conditions considered
in these experiments, ∂tf = 0, yields

(vz ∂z + a ∂vz + J) f = 0. (7)

Note that it is common in electron kinetic theory to use a
kinetic equation based on a small mass ratio approxima-
tion to the collision operator of equation (6) [65], but this
does not substantially affect the results.

4.2 Measurable quantities as velocity moments

After solving the steady state Boltzmann equation (7) for
f(z,v) with specified cross sections and atomic properties,

all quantities of physical interest then follow as velocity
“moments”, e.g., the electron number density

n(z) =
∫
f(z,v) dv (8)

and the mean electron energy,

ε(z) ≡
〈

1
2
mv2

〉
=

1
n(z)

∫
1
2
mv2f(z,v)dv. (9)

Broadly speaking, the left hand side is the measurable
investigated in experiment, while the right hand side
contains information about scattering cross sections and
threshold energies of the quantised atoms. The Boltzmann
equation therefore provides the link between microscopic
and macroscopic properties, and enables a rigorous inter-
pretation of the Franck-Hertz experiment.

Note that these averages may also be obtained from ei-
ther Monte Carlo simulation or directly from approximate
fluid equations as explained below. However, for the mo-
ment we focus on the kinetic theory approach, and char-
acterise the problem in terms of an eigenvalue problem.

4.3 Boltzmann eigenvalue problem

Eigenvalue problems occur naturally in kinetic the-
ory [54,55], just as they do elsewhere in physics, notably in
quantum mechanics. An important difference from quan-
tum mechanics is that the kinetic theory operators are
generally not Hermitian, and hence eigenvalues can be
complex. This is the case for the eigenvalue problem cor-
responding to the Franck-Hertz experiment, and indeed
as we shall see, the experiment effectively measures the
imaginary part of a particular eigenvalue belonging to the
spectrum.

The simplest way of understanding how the eigenvalue
problem arises is as follows: the steady state Boltzmann
equation (7) is separable in z and v, with possible solu-
tions of the form f(z,v) ∼ ψ(v) exp(Kz), where K is a
separation constant. The functions ψ(v) and allowed val-
ues of K are then found as the eigenfunctions and the
eigenvalues, respectively of the problem [30]

(Kjvz + a ∂vz + J)ψj = 0, (10)

where we have added an index j to indicate that the eigen-
value spectrum is generally found to be discrete. The in-
teger j = 0, 1, 2, . . . orders the allowed “modes” in the
following way:

j = 0 In general, for particle-conserving collisions
(elastic and inelastic collisions) considered in this section,
the lowest mode has eigenvalue K0 = 0 and corresponds
to the spatially homogeneous (sometimes called “equilib-
rium”) case, which would, in principle, be attained at very
large distances from the source, and ψ0(v) is equilibrium
velocity distribution function.

j > 0 Eigenvalues generally occur in complex conju-
gate pairs, but only those with negative real part, i.e.,

Re{Kj} = −kj (11)
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are taken to ensure the correct asymptotic behaviour at
large z. Furthermore it will be taken as implicit that

k1 < k2 < k3 < . . .

On the other hand, the imaginary part of the eigenvalue
is written as:

Im{Kj} = 2π/Δzj, (12)

where Δzj is the “wavelength” of the jth mode. Thus

Kj = −kj + 2π/Δzj.

The most general solution f(z,v) of the Boltzmann equa-
tion (7) is then a linear superposition of all possible eigen-
modes ∼ψj(v) exp(Kjz),

f(z,v) = f∞(v) + Re

⎧
⎨

⎩

∞∑

j=1

Sje
Kjz ψj(v)

⎫
⎬

⎭
, (13)

where f∞(v) = S0ψ0(v), and the coefficients Sj could,
if desired, be determined from the distribution function
f(0,v) at the source [30], though this is generally not
known. Near the source, many terms in the summation
equation (13) are generally needed, but sufficiently far
downstream, at distances z such that k2z > 1, the funda-
mental mode j = 1 dominates, and only one eigenvalue,

K1 = −k1 + i
2π
Δz1

determines the asymptotic distribution function,

f(z,v) ≈ f∞(v) + Re
{
S1ψ1(v) exp

[(
−k1 + i

2π
Δz1

)
z

]}
.

(14)
That is, the physical picture is characterised by a single
decay constant k1 and a single wavelength Δz1. For sim-
plicity these fundamental properties are written as just k
and Δz, respectively in what follows.

The asymptotic expressions for the quantities of phys-
ical interest then follow by integrating equation (14) over
velocity space, as in (8) and (9):

Number density:

n(z) = n∞ + n1 exp(−kz) cos(2πz/Δz + ϕn) + . . .
(15a)

Mean energy:

ε(z) = ε∞+ε1 exp(−kz) cos(2πz/Δz+ϕε)+. . . (15b)

To which we add for future reference:
Mean velocity

v(z) = v∞+v1 exp(−kz) cos(2πz/Δz+ϕv)+. . . (15c)

The constants n∞, n1, ε∞, ε1, v∞ and v1 are prescribed in
terms of appropriate integrals over ψ0(v) and ψ1(v), and
also depend upon the source coefficients S0 and S1 [30],
while the ϕ’s are corresponding phase differences. It is

clear that the spatial profiles of average electron prop-
erties in the asymptotic region are, like the distribution
function itself in equation (14), characterised by a single,
pure “harmonic” of wavelength Δz, which is an intrin-
sic property of the gas atoms. Ideally, the grid should be
positioned at z = d such that

k2d > 1, (16)

to ensure that contributions from higher modes j = 2, 3, in
equation (13) are negligible, and thus to ensure that any
possibility of “contamination” from the source is elimi-
nated. Equation (16) can be satisfied if d is chosen to
be sufficiently large. Alternatively, since wavenumbers are
proportional to gas number density (as discussed below),
equation (16) can also be satisfied if gas pressure is high
enough.

The above theoretical discussion shows, that like the
observations of Fletcher and Purdie [11,12], the internal
picture in the drift region is one of smoothly varying pro-
files, with curves in the asymptotic region characterised
by unique spatial and energy wavelengths, Δz and

εI = eEΔz, (17)

respectively. This contrasts with the external IA-U charac-
teristic which, even if the grid and retarding field operate
ideally, is generally not harmonic, sometimes emphatically
so. As can be seen from equation (4), there may be “flat”
regions, where IA = 0, something which is evident in the
experimental curve for neon shown in Figure 4. However,
this is not of concern, since in practice one is interested in
measuring only the voltage difference ΔU between max-
imum current peaks, and this furnishes the fundamental
property εI through equation (1).

To conclude this section, we make a few brief remarks
on scaling. Since the collision operator J in equation (7)
is proportional to n0, then properties in the drift region
depend upon the field E = U/d through the reduced field
E/n0 = U/(n0d), and upon distance though n0z. Simi-
larly eigenvalues in equation (10) depend upon E/n0 and
scale with number density n0.

4.4 Computational procedures

The first step in solving the eigenvalue problem of equa-
tion (10) is to extract the directional dependence of the
eigenfunctions in velocity space. Since there is axial sym-
metry about the field direction, all properties depend
only upon the angle θ between v and the z-axis, i.e.,
Ψn(v) = Ψn(v, θ), and the eigenfunctions may be decom-
posed through an expansion in Legendre polynomials. In
principle, the expansion is infinite, but in practice, only
a finite number of terms can be considered, and thus we
write for the nth eigenfunction,

Ψn(v) ≈
lmax∑

l=0

Ψn,l(v)Pl(cos θ). (18)
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The upper limit lmax on the l-summation is incremented
successively until some accuracy criterion is met, in our
work convergence to generally within 1% or so. For
low E/n0, electrons undergo predominantly elastic colli-
sions which randomise directions of electron velocity, and
the distribution function and eigenfunctions are nearly
isotropic in v-space. The expansion converges quickly and
lmax = 1 (the so-called two-term approximation [65]) is
usually sufficient to give mean energy to better than 1%
accuracy. However, when E/n0 is larger, inelastic colli-
sions become important and enhance anisotropy of f in v-
space. Then lmax > 1 (so-called multi-term analysis) is re-
quired to find average quantities to comparable accuracy.

The next step is to represent the coefficients Ψn,l(v) in
speed (or energy) space, and here there are a number of
possibilities. One could, for example, represent the func-
tion on a finite mesh of speeds or, as in reference [30],
expand Ψn,l(v) in terms of Sonine (generalised Laguerre)
polynomials about a Maxwellian weight function with an
arbitrary, adjustable temperature, generalising the “two-
temperature” method of Mason and McDaniel [64]. Note
that the combination of a Sonine polynomial and a spher-
ical harmonic is called a Burnett function, and that the
Burnett function representation of the Boltzmann equa-
tion provides a basis commonly used for analysing both
ions and electrons in gases [64,65].

In addition to investigating the asymptotic regime
downstream from the source through eigenvalue prob-
lem equation (10), the complete Boltzmann equation (7)
has been solved by Winkler et al. [47–49,69] and Li
et al. [30,56] over the entire region between source and
anode. This requires information about the distribution
function f(0, v) at the source and there is also a con-
straint at large distances,

f(z,v) → S0ψ0(v) as z → ∞, (19)

where ψ0 is the eigenfunction corresponding to zero eigen-
value. Note that the value of f at any boundary can
strictly speaking be specified only in the half-space vz > 0,
for otherwise there would be an over-specification of the
boundary conditions [71]. Such a condition cannot be rig-
orously imposed for representations of f(0, v) in terms of
a finite number of Legendre polynomials, and therefore, as
an approximation, we specify only half the spherical har-
monic expansion coefficients, f (l)(0, v), for l = 1, 3, 5, . . .,
while the even coefficients are specified on the upper spa-
tial bound (anode) [30]. Even then, since little is known
about the source itself the coefficients Sj in equation (13)
cannot be found unless further assumptions are made
about f(0, v) [56].

After fixing the boundary conditions, the solution of
Li et al. [30,56] proceeds as follows:

(i) as before, f(z, v) is represented in velocity space by
an expansion in Burnett functions; and then

(ii) f(z, v) is represented on a mesh of points zi be-
tween source and anode, using a second order finite
difference representation of the spatial derivative in
equation (7);

Cross section      

σm 

σi 

εi ε 

Fig. 7. Cross sections for a model gas with parameters pre-
scribed in the text.

(iii) the resulting (large order) matrix representation of
the Boltzmann equation in phase space is then solved
after truncation to finite size. The dimension is in-
creased incrementally until some pre-assigned con-
vergence criterion is satisfied, typically 1% or so for
the average electron properties (15).

In contrast, Winkler et al. [47–49,69] use the total energy
1/2mv2–eUz as an independent coordinate and discretise
accordingly. While one might wish to discuss the compu-
tational efficiencies of the respective procedures, obviously
an important practical consideration, there is no difference
in principle.

4.5 Numerical examples

In this section we summarise the kinetic theory calcula-
tions of Li et al. [30,56] for electrons in a model gas and
mercury vapour, and the results of White et al. [60] for
electrons in neon, calculated using both Monte Carlo sim-
ulation and kinetic theory. Results are shown as a function
of the reduced field, E/n0, in units of Townsend (Td).

4.5.1 Constant cross section model gas

Li et al. [30,56] solved equations (7) and (10) for a model
gas with constant elastic cross section σm and one inelastic
channel with cross section σI constant above the threshold
energy εi, as shown in Figure 7. The model parameters are
T0 = 0 K,m0 = 4 a.m.u. and σm = 6 A2, with σi = 0.1 A2,
εi = 2 eV, E/n0 = 9 Td unless otherwise stipulated.

In the following diagrams, lengths are scaled accord-
ing to a representative mean free path λ = (

√
2n0σ0)−1,

where σ0 = 1 A2 is a nominal cross section. Thus distances
from the cathode are measured in terms of z/λ, while the
dimensionless form of the fundamental eigenvalue is

K∗
1 = K1λ (20)

from which it follows that Re(K∗
1 ) = λ Re(K1) = −λk1

and Im(K∗
I ) = λ2π/Δz. The energy wavelength (17) may

then be written in terms of a scaled wavelength as:

εI(eV) = 0.0707
(
E

n0

)

Td

Δz

λ
(21)
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Fig. 8. The (negative of the) real (full line) and imagi-
nary (dotted line) parts of the dimensionless fundamental
eigenvalue (20) as a function of: (i) reduced electric field;
(ii) threshold energy and (iii) inelastic cross section ampli-
tude, for the step function model of Figure 7. Distances are
normalised according to the wavelength λ defined in the text
(after Refs. [30,56]).

or equivalently

Im(K∗
I ) = 0.444(E/n0)Td/εI . (22)

Figure 8 illustrates the way in which the real and imagi-
nary parts of K∗

1 vary with each of the model parameters.
In particular, it can be seen that Re(K∗

1 ) is small within
a “window” of reduced fields 0.5 Td < E/n0 < 13 Td,
and Im(K∗

1 ) is proportional to E/n0. For a fixed value of
E/n0 within the window, Im(K∗

1 ) is inversely proportional
to εi, which is consistent with equation (22) and εI ≈ εi.
This is mirrored in Figure 9, which shows how a periodic
structure in average velocity develops and abruptly van-
ishes as E/n0 increases from just below the window, to
just above. Values of the dimensionless wavelength Δz/λ
obtained from these curves may be substituted into equa-
tion (17) to yield an energy wavelength εI ≈ εi = 2 eV.
Here the model atom has only one energy level and there
is no possible ambiguity in interpreting the energy wave-
length. The last diagram in Figure 8 shows that Im(K∗

I )
increases and then saturates with increasing inelastic cross
section. These model gas results provide a prototype for
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Fig. 9. Spatial profiles of average velocity for electrons in a
model gas governed by a step function collision model of Fig-
ure 7, for a range of reduced fields [30,56].

subsequent investigations for real gases. The fluid model
discussed in Section 5 enables us to understand the origin
of the window phenomenon.

4.5.2 Mercury vapour

Eigenvalue method – the asymptotic regime

We now employ the eigenvalue technique for electrons in
mercury gas, as originally used by Franck and Hertz [4],
with the England, Elford-Hanne cross sections [29,59] as
shown in Figure 3. To ensure an accuracy of a few percent
in average quantities, we require lmax = 2 in equation (18),
and Sonine polynomials up to order 10. Results are shown
in Figure 10 for the mean energy for a range of values
of E/n0 consistent with experiment. At E/n0 = 5 Td,
the dimensionless wavelength is found to be Δz/λ ≈ 14
which, with (21), gives an energy wavelength εI ≈ 4.9 eV,
consistent with the 6 1S0 → 6 3P1 transition, and withΔU
as determined from the current-voltage curve Figure 2.
The reason that the experiment (and also the theoretical
calculations) “selects” this process from amongst the other
possible transitions has been explained in Section 3.2.

These calculations include the effect of elastic colli-
sions through the momentum transfer cross section σm,
as measured by England and Elford [29]. While this is
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Fig. 10. Spatial profiles of mean energy for electrons in mer-
cury vapour for a range of E/n0 realised in the Franck-Hertz
experiment, and calculated using the eigenfunction method.
Although these results strictly speaking hold in the asymp-
totic region, far downstream from the source, we have, for con-
venience, drawn the profiles as if they covered the entire region.
Figure taken from references [30,56].

clearly enormous, the traditional discussion neglects such
collisions entirely, in effect setting σm = 0. Does a drastic
assumption like this make any difference to what would
be measured in an experiment? The answer may be found
in the last diagram of Figure 10, which shows what hap-
pens to the mean energy profile when σm is reduced by
a factor of 10 from that shown in Figure 3. The ampli-
tude of oscillations is markedly increased, and damping
is also significantly reduced. Significantly, the wavelength
is somewhat reduced, and εI now lies below 4.9 eV. By
virtue of equation (1), the value of ΔU measured in an
experiment would also be expected to be less than 4.9 V.
Although inelastic collisions play the dominant role in de-
termining the wavelength, elastic collisions obviously nev-
ertheless play a small, but significant role in determining
the measured value of ΔU .

4.5.3 Neon

Winkler et al. [47–49] were the first to investigate peri-
odic structures in neon through solution of Boltzmann’s
equation, but made no connection with either the Franck-
Hertz or SST experiments. Fletcher and Purdie [12] com-
plemented their SST experimental measurements with a
Monte Carlo simulation, and remarked on the sensitivity
of the results to the choice of cross section set. In this
section, we summarise the results of White et al. [60],
who investigated neon using both Boltzmann equation
and Monte Carlo simulation, based on the set of (e, Ne)
cross-sections shown in Figure 11. Elastic scattering is ac-
counted for through the momentum transfer cross-section,
and allowance is made for anisotropic scattering, while all
inelastic cross-sections including ionization, are assumed

Fig. 11. The electron impact cross-sections for neon as com-
piled in reference [60]. See legend for the details of the scatter-
ing processes.

isotropic. The temperature is fixed at 293 K for all simu-
lations and calculations.

Figure 12 shows profiles obtained from a Monte Carlo
simulation [60] in which electrons are released into neon
gas with a mono-energetic distribution at 1 eV. For E/n0

below 2 Td, elastic collisions dominate, and the profile
is monotonic. Above about 3 Td, inelastic processes in-
volving excitation of neon atoms to higher energy levels
become significant, and an oscillatory profile develops. A
further increase of field above 50 Td results in a monotonic
profile once more. The physical origin of this “window” is
explained in Section 5.

Figure 13 shows Im(K∗
I ) = λ2π/Δz calculated from

wavelengths Δz/λ estimated from the Monte Carlo pro-
files of Figure 12, as compared with the corresponding
numbers calculated from the Boltzmann eigenvalue prob-
lem equation (10). In the Boltzmann equation solution,
we have treated ionization as an electron conserving pro-
cess (i.e., the ejected electron is ignored) while for the
Monte Carlo simulation it has been treated exactly. For
this reason Im(K∗

1 ) is somewhat smaller for the Monte
Carlo simulation, or equivalently, the wavelength is larger
than for the Boltzmann calculation. This is because treat-
ing ionization exactly means that any excess energy after a
collision is shared between the ejected and scattered elec-
tron. Consequently, on average, the scattered and ejected
electrons must travel further to gain sufficient energy from
the field to again excite a neon atom, effectively increasing
the wavelength. On the other hand if, as in the Boltzmann
calculation shown in Figure 13, ionisation is treated as just
another inelastic process, there is no such energy dilution,
and the wavelength is smaller.

The energy wavelength εI is found from the Boltzmann
analysis to be 18.8 ± 0.1 eV, and 19.0 ± 0.2 eV from
the Monte Carlo simulation. Our Franck-Hertz experi-
mental result (Fig. 4) and equation (1) together give
εI = 18± 1 eV. Fletcher and Purdie find a somewhat lower
value of 18.5 eV in their photon flux experiment [12]. None
of these numbers coincide with any particular neon energy
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Fig. 12. Spatial relaxation of electrons in Neon for a range of applied reduced electric fields as found through Monte Carlo
simulation [60].

Fig. 13. Variation of the real and imaginary parts of the di-
mensionless fundamental eigenvalue K∗

1 with E/n0 for elec-
trons in neon, as calculated from solution of the Boltzmann
eigenvalue problem equation (10), with the cross sections of
Figure 11. The imaginary part increases linearly with E/n0,
consistent with equation (22), while the minimum in the real
part of the eigenvalue occurs at around 8 Td, consistent with
the oscillatory profile of least damping shown in Figure 12. Also
shown are the imaginary part of the eigenvalue obtained from
equation (12) and the wavelengths of profiles in Figure 12. Dis-
crepancies between Boltzmann and Monte Carlo results orig-
inate from the fact that ionization is treated as just another
inelastic process in the former, and as a true non-conservative
process in the latter (after White et al. [60]).

level (Fig. 5). The results presented here, both experimen-
tal and theoretical, therefore indicate that no particular
energy level of neon can be inferred directly from the wave-
length of the periodic structures. Figure 11 shows that
the excitation thresholds are closely spaced, with cross-
sections of the similar orders of magnitude. The best that
can be said is that the measured or calculated value of εI

is the result of a weighted average of the various inelas-
tic processes. It is interesting to note that Fletcher and
Purdie [12] also performed a Monte Carlo simulation for
neon, and remarked on the sensitivity of the value of εI

thus obtained to the choice of cross sections.

4.5.4 Other noble gases

To date, there has not been any solution of the Boltzmann
equation for argon, to compare with the experimental re-
sults and Monte Carlo simulations of Magyar et al. [61]. In
contrast, solutions of the Boltzmann equation by Winkler
et al. [47–49] are available for helium and krypton, but we
are not aware of any corresponding Franck-Hertz experi-
ment with these gases.

4.5.5 Methane

In general, periodic structures are possible only if the en-
ergy gap between the ground and first excited states is
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sufficiently large. The second diagram in Figure 8 shows
for example, that the imaginary part of the fundamen-
tal eigenvalue is zero when the threshold energy is very
low. For this reason molecular gases are not considered
as candidates for the Franck-Hertz experiment, since they
generally have many low lying, closely spaced rotational
energy levels. Fletcher [11] and Sigeneger and Winkler [49]
demonstrated this, experimentally and theoretically, re-
spectively, for N2.

An exception to the general rule is methane, for which
the vibrational states lie only a few tenths of an eV above
the ground state, but this is nevertheless sufficient to gen-
erate periodic structure formation [72,73]. Methane is par-
ticularly interesting, because it has an elastic cross section
with a deep Ramsauer minimum, which is responsible for
negative differential conductivity, i.e., drift velocities de-
creasing with increasing E/n0. However, the Ramsauer
minimum is not responsible for producing the Franck-
Hertz oscillations, as has been suggested [73].

4.5.6 The effect of a magnetic field

Drift tube experiments are sometimes conducted with a
magnetic field applied at right angles to the electric field,
to enable a finer probe of electron-atom or molecule inter-
action cross sections [74]. In principle, the Franck-Hertz
experiment could also be carried out with a magnetic field,
and theoretical investigations by Li et al. [75] and Dujko
et al. [76] indicate some very interesting effects. Thus, for
example, oscillations may be enhanced or suppressed by
the magnetic field, and the operational “window” of the
Franck-Hertz experiment modified accordingly. The ki-
netic theory in this case is much more difficult, as the elec-
tric field direction is no longer an axis of symmetry, and
the simple Legendre polynomial expansion equation (18)
has to be replaced by an expansion in spherical harmonics.

4.5.7 The influence of ionisation – Lucas-Saelee model

In many investigations of electron swarms in gases and
plasmas ionisation is treated as just another inelastic pro-
cess. The cross section model of Lucas and Saelee [77] was
constructed specifically to test the accuracy of such an as-
sumption. Li et al. [72] and Dujko et al. [78] demonstrated
that the assumption leads to errors in the periodic struc-
ture profiles, the physical origin of which were detailed
above for the neon calculations (see Fig. 13).

5 Fluid modelling

5.1 The window of operational E/n0

for periodic structures

It is clear from Section 4 and Figure 9 in particular, that
there exist both lower and upper bounds of E/n0 in which
periodic structures develop, and outside this “window”
of reduced fields electron properties are monotonic. This

has the practical implication that the Franck-Hertz ex-
periment can yield useful information only for a certain
range of voltages and gas pressures. While one can under-
stand the reason for the lower bound (the field must be
high enough to energise electrons above the lowest energy
level of the atom), the reason for the existence of the up-
per bound is by no means clear, certainly from either the
Boltzmann equation solution or Monte Carlo simulations,
both of which are purely numerically oriented. For that
reason we seek to understand the window phenomenon
through the “fluid equation” approach.

5.2 General remarks on fluid modelling

As an alternative to solving the Boltzmann equation (7)
in phase space, properties of physical interest, such as
the mean electron energy equation (9), may also be ob-
tained directly from a set of approximate moment or bal-
ance equations (the terms are used synonymously). At
the lowest order, balance equations for particle number,
momentum and energy are obtained by multiplying the
Boltzmann equation (7) with the functions ϕi(v) = 1,
mv, 1

2mv
2 (i = 1, 2, 3) and integrating over all particle

velocities v. The ith member of the set may be written
quite generally as:

∂z (n〈vzϕi〉) − na〈∂vzϕi〉=−n〈J†(ϕi)〉 (i=1, 2, 3)
(23)

where J† is the adjoint of the collision operator and 〈〉
is a velocity space average defined as in equation (9).
However, the velocity space operators, vz and J† act on
ϕi(v) to generate new quantities outside the original set.
Thus, for example, the first term in the i = 3 equa-
tion is 〈vzϕ3〉 = 〈1

2mv
2vz〉, an additional moment called

the “energy flux”. This could, in principle, be found by
forming a higher order moment equation, but further un-
known moments would then be introduced, and so on.
The three equations must somehow be closed, by means
of at least one approximation (an “Ansatz”), so that they
can be solved for the three moments of physical inter-
est. In fact an Ansatz to approximate the collision terms
〈J†(ϕi)〉, called ‘momentum transfer theory’, has long
known in both ion and electron swarm physics [64,65],
so only an Ansatz for the energy flux is required. It is
well established [79] that any such approximation must
be physically-based, rather than ad hoc, and benchmarked
against established results in order to have any chance of
success. Nowhere is this more relevant than for analysis of
the Franck-Hertz experiment.

The computational economy associated with the fluid
model provides not only quick and reasonably accurate
quantitative estimates of quantities of experimental inter-
est, but also the physical insight which is missing from
numerical solution of the Boltzmann equation, and Monte
Carlo simulations.
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5.3 The fluid model

The particle number, momentum and energy balance
equations for the electrons in the drift region of Figure 1
are [67]:

∂Γ

∂z
= 0 (24)

2
3
∂(nε)
∂z

= neE − nmνm(ε)v (25)

and

−1
νe

(
v
∂ε

∂z
+

2ε
3
∂v

∂z
+

1
n

∂J

∂z

)
= ε− 3

2
kT0 − 1

2
m0v

2 +Ω(ε)

(26)
respectively, where all symbols have the same meaning as
in references [67,79]. Thus Ω = Σi εi(�νi − ←

ν i)/νe is the
energy transferred in inelastic collisions during one elas-
tic energy relaxation time [65,78]; Γ is the electron flux;
e, m, are the electron charge and mass; m0, T0, are the
atomic mass and temperature of the gas; k is Boltzmann’s
constant; n, v, ε, are the electron number density, mean
velocity, and mean energy; J is the heat flux; εi are in-
elastic thresholds; and νe, νm, �νi,

←
ν i, are average collision

frequencies for energy transfer, momentum transfer, in-
elastic, and superelastic processes, respectively. The elas-
tic collision frequencies are given by νe = (2m/m0)νm,
νm = n0 (2ε/m)1/2σm, n0 being the density of ground
state atoms and σm the momentum transfer cross section.
Boundary conditions are such that v and ε are specified
at z = 0, and that the spatial derivatives of all quantities
vanish as z → ∞.

The collision terms on the right hand side of equa-
tions (25) and (26) are calculated according to the lowest
order of momentum transfer theory [65,68,78], but oth-
erwise the left hand sides are exact. For present purposes
we neglect superelastic collisions, since we are dealing with
cases where the energy gap is large compared with kT0.
The averages �νi(ε) may be prescribed as in Section 7.2 of
reference [65], and then equation (3) is a close approxima-
tion to Ω. The so-called “direct substitution method” [80]
provides a more accurate, empirically based representa-
tion of Ω(ε).

Equations (24)–(26) are closed through the heat flux
Ansatz of reference [79]:

J = − 2
3m

∂

∂z

[
nξ(ε)
νm(ε)

]
+

(5 − 2p)
3

nqEε

mνm(ε)
− 5

3
Γε, (27)

in which p = dlnνm/dlnε. For elastic collisions we can set
ξ = α0ε

2, where α0 ≈ 1, as explained in reference [79], but
when inelastic collisions are significant, a more general ex-
pression must be prescribed. Since ξ has the dimensions
of energy squared, the only way to construct such a func-
tion is through some combination of both Ω and ε. In
reference [67] an additional, empirical Ansatz was made

ξ = α0ε
2
[
1 + Ω(ε)

ε

]−r

(28)

where r is an adjustable parameter. This expression is
justified through the benchmarking and reduces to the
established result [79] in the elastic limit Ω → 0.

5.4 Asymptotic region: the cubic equation

Again following references [67,79], we consider the asymp-
totic region, far downstream from the source, where all
quantities are assumed to be only slightly perturbed from
their equilibrium expressions, e.g.,

n (z) = n∞ + n1e
Kz, (29)

and similarly for v(z), ε(z) and J(z). Attention is focussed
on the decay constant K, expressed in a terms of a dimen-
sionless wave number κ by

K = (3/2)(qE/ε∞)κ. (30)

Equations (24)–(27) are then linearized in small quanti-
ties, and after some algebra, there follow three homoge-
neous equations in the three unknowns, n1, v1, ε1. This
system has a nontrivial solution if and only if the determi-
nant of coefficients vanishes, which is expressed as a cubic
equation in κ:

3
2
α (p− p− 1)κ3 −

(
3
2
αp− 5

2
p+ p2

)
κ2

−
(
γ − 2p− 7

2

)
κ+ (γ + 2p) = 0, (31)

in which

p =
ε∞ξ′(ε∞)
ξ(ε∞)

= 2 + r(1 − γ) (32)

α =
ξ(ε∞)
ε2∞

= α0

[
1 +

Ω(ε∞)
ε∞

]−r

(33)

and

γ =
(1 +Ω′) ε∞

ε∞ +Ω − (3/2)kT
. (34)

Physically meaningful solutions exist for negative K only
(solutions of Eq. (29) must decay at infinity) and there-
fore we seek roots of equation (31) with Re(κ) � 0. For
purely elastic collisions, Ω = 0, γ is a constant equal to 1,
and the solutions of equation (31) are always real, i.e.,
there are no oscillations. When inelastic collisions are im-
portant, however, Ω is non-zero, and γ may be sharply
peaked, as shown schematically in Figure 14. Solutions of
equation (31) are complex when γ exceeds a certain crit-
ical value, γc > 1, leading to oscillatory behaviour. The
corresponding range of fields for this oscillatory behaviour
(E/n0)1 < E/n0 < (E/n0)2 constitutes the operational
“window” for the Franck-Hertz experiment. Note that it
is different for different gases, and is controlled by both
elastic and inelastic collisions, as explained below.

The fluid model was benchmarked in reference [67]
against solutions of the Boltzmann equation for the con-
stant cross section model gas of Section 4.5.1 (see Fig. 7).
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Fig. 14. Schematic representation of the parameter γ defined
by equation (34), showing how the “window” of E/n0 is defined
by a certain critical value γc (horizontal dashed line), for which
the solutions of equation (31) become complex. Note that for
purely elastic collisions, γ = 1 for all E/n0, the solutions of
equation (31) are real, and no oscillatory behaviour is possible.

Solutions of the cubic equation (31) were found for p =
0.5, with parameters α0 = 0.83, r = 0.4, as discussed in
reference [67].

The imaginary part κi of the solution of equation (31)
gives values of the wavelength

Δz =
4π
3

ε0
eEκi

(35)

of periodic structures in the drift region of a Franck-Hertz
experiment for the model gas and Hg vapour, which are
in good agreement with solutions of the Boltzmann eigen-
value equation (10). This shows that the fluid model may
be used as a reliable means of estimating energy wave-
lengths, if desired. However, the focus of the remainder of
this section is on understanding why there are bounds on
the reduced field for which these oscillations occur. Note
that a good, physically-based heat flux Ansatz like equa-
tion (27) is critical to the exercise. Certain popular, but
deeply flawed, ad hoc expressions for heat flux [81], have
no chance of reproducing these effects, even qualitatively.

5.5 Understanding the window phenomenon

We now explore the physical origin of the window
phenomenon:

(a) If E/n0 is so small that inelastic collisions are negli-
gible, such that γ ≈ 1 < γc, the cubic equation has
only real solutions. This is a mathematical reflection
of the fact that elastic collisions by themselves provide
no physical mechanism for producing oscillations.

(b) As the value of E/n0 increases, inelastic collisions
become significant, and γ increases above unity, as

shown in Figure 14. The maximum value γmax to
which γ rises is determined by the ratio

ρ = σi/σe (36)

of the inelastic cross section σi to the cross section
σe = (2m/m0)σm for elastic energy transfer eventu-
ally. If this is large enough, γmax lies above the crit-
ical value γc, and complex solutions of equation (31)
become possible, leading to oscillations. For the con-
stant cross section model of Section 4.5.1, γc ≈ 1.6,
γmax ≈ 30, and ρ ∼ 2 × 102.

(c) As E/n0 is further increased, the relative importance
of inelastic processes declines: the magnitude of en-
ergy loss in elastic collisions continues to increase, but
the energy lost in inelastic processes remains fixed.
Consequently, after attaining its maximum value, γ
falls as E/n0 increases, and eventually when γ < γc

oscillations are no longer possible. This defines the up-
per bound of the window. For the constant cross sec-
tion model, the window of reduced fields is predicted
by fluid analysis to be 0.5 Td < E/n0 < 10 Td, in
reasonable quantitative agreement with the rigorous
Boltzmann analysis (Figs. 8 and 9).

(d) While the value of ρ, and hence γmax, is determined
in advance by specifying the atomic parameters and
cross sections, the corresponding value of γc emerges
only after solution of equation (31). In actual fact,
γmax increases and γc decreases with increasing ρ, pro-
ducing an expanded window. Conversely, reducing ρ
lowers γmax and raises γc resulting in a shrinking win-
dow. We emphasize that γmax is determined entirely
by ρ – if this is so small that γmax < γc, then, re-
gardless of the magnitude of the threshold energy εi,
oscillations cannot occur at any E/n0.

(e) The width of the window is actually proportional to
the threshold energy εi, since the larger its value, the
longer the influence of the inelastic collisions lasts (see
point (c) above). Conversely, reducing εi tends to sup-
press the width of the window, which is negligible if
εi is small enough.

(f) It is found that over much of the window the wave-
length as calculated from equation (35) is in good
agreement with the value found from solution of
Boltzmann’s equation.

(g) Although the present discussion has been focussed on
the constant cross section model, similar reasoning ap-
plies to real gases. The cubic equation (31) is solved
using real energy-dependent cross sections, and with
an energy-dependent parameter p. The operational
windows for a Franck-Hertz experiment with Hg is
found to be approximately 0.5 Td < E/n0 < 4 Td in
fair agreement with the Boltzmann analysis.

6 Resonances, non-locality and striations

6.1 Spatially varying fields, resonances and non-locality

The Franck-Hertz experiment strictly operates with an
externally prescribed uniform electric field which drives a
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dilute swarm of a single charge species (electrons) from a
localized plane source (the cathode) through an atomic gas
through to the anode via a grid. The quantized nature of
the atoms results in the electrons losing discrete amounts
of energy in inelastic collisions, which is reflected on the
macroscopic scale through spatial oscillations in mean en-
ergy in the drift region of a wavelengthΔz ≈ εI/eE, where
εI is some weighted mean of the threshold energies of the
various contributing processes (see Sect. 3.2). These “free”
or “natural” modes of oscillation of the electron system
may be called “Franck-Hertz waves” in what follows, to
distinguish them from oscillations forced on the system by
a spatially varying field.

Generally speaking, if the mean free path l for colli-
sions between charged particles and gas molecules is com-
parable with the wavelength lE of the spatial variations
of an externally imposed, harmonically varying field, the
response of the system may be non-local, that is, physical
properties at some point z can be determined by the field
at different points z′. For light particles such as electrons,
l should be interpreted as the mean free path for energy
transfer, which is several orders of magnitude larger than
the mean free path per se. On the other hand, for heavier
ions, the two types of mean free paths are comparable.
This means that in a plasma, consisting of equal numbers
of ions and electrons, the response of the electron compo-
nent to an external field may be non-local, whereas the
ions may respond locally.

In addition, resonances can be expected if the wave-
length of the field is comparable with the Franck-Hertz
wavelength, i.e., lE ∼ Δz. An interesting situation arises
if the three length scales are comparable,

l ∼ lE ∼ Δz (37)

for then there is a possibility of a synergy between reso-
nance and non-local effects.

While an analysis through the Boltzmann equation un-
doubtedly offers the most rigorous approach [82], fluid
analysis offers considerably greater computational econ-
omy and more physical insight. Thus the formalism of
Section 5 can be readily adapted to space-dependent
fields [83], for both model and real cross sections. The re-
sponse of average electron velocity to a Gaussian-shaped,
spatially-dependent perturbing field E1(z) superimposed
on a uniform field E0 is illustrated in Figure 15. For E0/n0

lying within the Franck-Hertz window, resonances occur
for those Fourier components of E1(z) with wavelengths l
satisfying equation (37), and significant non-local effects
are apparent [83].

6.2 The path to striations

The above analysis, like much other work in this area (see
e.g., Sigeneger and Winkler [82]) is strictly speaking valid
for a single species, dilute electron swarm in a gas subject
to an external field. Nevertheless it can be carried over
to deal with a partially ionised plasma, consisting of two
charged species, ions and electrons, where E1 is now a

Fig. 15. Perturbations v1 in electron average velocity in re-
sponse to a narrow Gaussian spatially-dependent perturbation
E1(z) (red dashed line) centered at z/λ = 5. Pronounced non-
local and resonant effects occur if the unperturbed reduced field
E0/n0 lies within the Franck-Hertz “window” (blue curve). The
black chain curve shows the response if the unperturbed field
lies below the window (after Nicoletopoulos et al. [83]). As be-
fore λ = (21/2Nσ0)

−1 is a scale length, σ0 = 10−20 m2 is a
representative cross section and the collision model is defined
as: gas temperature T0 = 0 K, m0 = 4 a.m.u., σm = 6 A2, and
σi = 0.1 A2 above a threshold of εi = 2 eV.

self-consistent space charge field, generated by, and in turn
acting upon the ion and electron components. Non-locality
and resonance effects are then accompanied by screening
effects, as characterized by an additional intrinsic scaling
parameter, the Debye length lD.

A three-way synergy between Franck-Hertz waves,
non-locality and space-charge fields lies at the heart of
striations, alternating light and dark fringes, sometimes
moving, sometimes stationary, the subject of experimen-
tal and theoretical investigation for around 170 years [17].
Although some progress has been made [25], a rigorous
theoretical framework has yet to be developed, and conse-
quently there is still no complete physical understanding
of this enigmatic phenomenon. Ideally one would solve the
Boltzmann kinetic equation for each of the ion and elec-
tron components, simultaneously with Poisson’s equation.
This is a formidable task, however, which has not yet been
attempted. Even the fluid approach, which is considerably
less computationally demanding, is not a viable option at
the time of writing, because a physically-based, bench-
marked set of ion fluid equations, suitable for practical
application to plasmas, is still to be developed: while gen-
eral fluid equations for ions have long been available [68],
the closure problem is much more difficult than for elec-
trons, where a single Ansatz for heat flux (27) suffices.
Note that in general, one cannot simply assume an ion
fluid model based upon the diffusion equation (2), whose
validity is limited.

http://www.epj.org


Eur. Phys. J. D (2014) 68: 188 Page 19 of 20

7 Concluding remarks

This article reviews the Franck-Hertz experiment, starting
from the original results for mercury vapour re-
ported 100 years ago, proceeding to neon, and compar-
ing with other experiments in which similar physical pro-
cesses occur. We examine the conventional interpretation,
which has prevailed through several generations of physi-
cists, and show that it is fundamentally flawed. Although
the experiment clearly demonstrates atomic quantisation,
it is incorrect, in general, to attribute the measured peak-
to-peak voltage difference to any one atomic energy level.
The exception is mercury vapour, for which a peculiar
combination of circumstances produces a fortuitous coin-
cidence between the measurement of 4.9 V and the energy
of the second excited state of Hg. From a theoretical per-
spective, the experiment measures the imaginary part of
an eigenvalue of the Boltzmann kinetic equation, which is
effectively a sum over atomic levels weighted by the col-
lision cross sections for electron impact excitation of the
levels. A fluid model is also discussed, and the origin of
the operational window of fields is explained as a complex
interplay between elastic and inelastic collisions.

The periodic structures which develop in the drift re-
gion of the Franck-Hertz experiment are the natural oscil-
lations of a system of electrons undergoing inelastic col-
lisions in a gas subject to a uniform electric field. If the
system is subject to a non-uniform field, resonances at
the natural wavelength and non-local effects may occur.
Such phenomena also lie at the heart of striations long
known in low temperature plasmas, but still incompletely
understood after 170 years. Solving this long-standing
problem would, in the context of the present article, effec-
tively close the circle, since it was investigations of stria-
tions, commencing in the mid-nineteenth century, which
eventually spawned the seminal gas-discharge experiments
around the turn of the century and later, including the
work of Franck and Hertz in Berlin. Since it has taken al-
most 100 years for the Franck-Hertz experiment to be fully
understood, perhaps it should not really be surprising that
the far more complicated phenomenon of striations should
take even longer!
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Bruxelles, who made the study of the Franck-Hertz experi-
ment his life’s work. This article is dedicated to him. We also
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Bo Li of the University of Sydney, and Professor Zoran Petro-
vic and Dr Sasa Dujko of the Institute of Physics in Belgrade.
The support of the Paul Scherrer Institute, Switzerland, and
the Australian Research Council is gratefully acknowledged.
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