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Published online: 25 April 2014 – c© Società Italiana di Fisica / Springer-Verlag 2014
Communicated by H. Ströher

Abstract. The COMPASS Collaboration at CERN has investigated the reaction π−γ → π−π−π+ em-
bedded in the Primakoff reaction of 190 GeV pions scattering in the Coulomb field of a lead target,
π−Pb → π−π−π+Pb. Exchange of quasi-real photons is selected by isolating the sharp Coulomb peak
observed at momentum transfer below 0.001 (GeV/c)2. Using a partial-wave analysis the amplitudes and
relative phases of the a2(1320) and π2(1670) mesons have been extracted, and the Coulomb and the
diffractive contributions have been disentangled. Measuring absolute production cross sections we have
determined the radiative width of the a2(1320) to be Γ0(a2(1320) → πγ) = (358 ± 6stat ± 42syst) keV. As
the first measurement, Γ0(π2(1670) → πγ) = (181 ± 11stat ± 27syst) keV · (BRPDG

f2π /BRf2π) is obtained for

the radiative width of the π2(1670), where in this analysis the branching ratio BRPDG
f2π = 0.56 has been

used. We compare these values to previous measurements and theoretical predictions.
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1 Introduction

Radiative decays of mesons are an important tool for the
investigation of their internal structure as the electromag-
netic transition operators are well known and probe the
difference between the initial- and final-state mesons in
terms of their electric charge or magnetic current distri-
butions. The established a2(1320) → πγ decay constitutes
a magnetic quadrupole transition. The π2(1670) → πγ
decay was not measured before. It represents an elec-
tric quadrupole transition, which is expected to probe the
charge distribution of the orbitally excited meson out to
large distances. Radiative transitions can be calculated
using the meson wave function obtained in various quark
models. In addition, the vector meson dominance model is
used to relate ρπ and γπ decays via the ρ−γ equivalence.
Various calculations do exist for the radiative width of the
a2(1320). Applying vector meson dominance, a width of
375 ± 50 keV was calculated by ref. [1]. Using a relativis-
tic quark model for the meson wave function, a value of
324 keV was extracted [2], and 235 keV was derived from
a covariant oscillator quark model [3]. Newer calculations
in this model framework yield 237 keV [4]. The covari-
ant oscillator quark model was also used for a prediction
of the radiative width of the π2(1670); for two different
model versions values of 335 keV and 521 keV are given in
ref. [4].

The direct measurement of electromagnetic couplings
using radiative decays of mesons is difficult, as the cor-
responding branching ratios are small, and background
from processes containing π0 → γγ or η → γγ with one or
more of the photons lost may be significant. An alternative
access to the radiative transition amplitudes is given by
πγ scattering as provided by Primakoff production of the
resonances under investigation, where an ultra-relativistic
(i.e. quasi-stable) pion beam scatters off the quasi-real
photons of the electromagnetic field of a heavy nucleus.
The respective flux is given by the Weizsäcker-Williams
equivalent-photon approximation [5], which relates the ex-
perimentally observed cross section σπA to the cross sec-
tion of real photon scattering σπγ as

dσπA

dsdt′ dΦ
=

αZ2

π(s − m2
π)

F 2
eff(t′)

t′

(t′ + tmin)2
dσπγ(s)

dΦ
. (1)

The positive quantity t′ = |t| − tmin contains the
four-momentum transfer squared t = (pπ − pX)2 and
tmin = [(s−m2

π)/2Ebeam]2 with m = mX =
√

s being the
invariant mass of a final state X given by s = (pπ + pγ)2.
The symbol dΦ denotes the phase-space element as given
in ref. [6], eq. (43.11), and Z is the charge of the nucleus
with mass number A.

We approximate the form factor F 2
eff(t′) by means of

the sharp-radius approach of refs. [7,8] and [9], thus taking
into account the distortion of the pionic wave functions in
the Coulomb field. We use |Fu

C(t′, tmin)|2 given in eq. (27)
of refs. [7,8], which also includes the Weizsäcker-Williams
term t′/(t′ + tmin)2. For the extended charge distribution
of the lead nucleus, we take a sharp radius of ru = 6.52 fm.

The cross section for the production and decay of a
broad resonance X with spin J and nominal mass m0,
averaged over its spin projections, is parameterised by a
relativistic Breit-Wigner function. Modified for the case
of pion-induced Primakoff production, it reads

dσ

dmdt′
= 16αZ2(2J + 1)

(
m

m2 − m2
π

)3

× m2
0 Γπγ(m)Γfinal(m)

(m2 − m2
0)2 + m2

0Γ
2
total(m)

× t′

(t′ + tmin)2
F 2

eff(t′). (2)

Here, Γπγ(m) = fdyn
πγ (m)Γ0(X → πγ) is the mass-

dependent radiative width with fdyn
πγ the kinematic factor

discussed in sect. 3.1 multiplied by the nominal radiative
width Γ0(X → πγ) that is the subject of this paper. The
symbol Γtotal(m) denotes the total mass-dependent width
of the resonance X (see eq. (11) below), and Γfinal(m)
its mass-dependent partial width for the decay into the
investigated final state

Γfinal(m) = fdyn
final(m)Γ0(m0) CG BR, (3)

where CG is the relevant squared isospin Clebsch-Gordan
coefficient of the resonance decay into the investigated fi-
nal state with branching ratio BR and Γ0(m0) is the nom-
inal width of the resonance at its nominal mass.

Integrating eq. (2) over the relevant ranges in m and
t′, the radiative width is found to be related to the abso-
lute cross section σPrimakoff,X via a constant CX that is
calculated according to eq. (14):

σPrimakoff,X =
∫ m2

m1

∫ t′max

0

dσ

dmdt′
dt′ dm

= Γ0(X → πγ)CX . (4)

Thus the radiative width Γ0(X → πγ) can be determined
from the number of events NX,prim experimentally ob-
served from Primakoff production,

Γ0(X → πγ) =
NX,prim/εX

CX L CG BR εresol
, (5)

with εX being the acceptance of the experimental appa-
ratus and the event selection procedure, and L the inte-
grated luminosity corresponding to the analysed data set.
Effects due to the finite resolution in t′ are absorbed by
εresol, which reflects the migration of events from the sharp
peak near t′ ≈ 0 to higher values outside of our selected
t′ region.

2 Primakoff production of resonances in the
π−π−π+ final state

The COMPASS experiment located at the CERN Super
Proton Synchrotron features a large-acceptance and high-
precision spectrometer [10]. It offers very good conditions
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Fig. 1. Sketch of the experimental setup of the Hadron Run in the year 2004.

to study reactions of high-energy beam particles imping-
ing on fixed targets at low-to-intermediate momentum
transfers. Its acceptance covers mostly the phase space
for final-state particles emerging in forward direction. The
data presented in the following were recorded in 2004 us-
ing a 190GeV negative hadron beam, which consists of
96.8% π−, 2.4% K−, and 0.8% p̄ at the COMPASS tar-
get. The experimental setup is sketched in fig. 1. The
target is surrounded by a veto system designed to re-
ject non-exclusive forward or large-angle reactions. High-
precision silicon micro-strip detectors with a spatial reso-
lution of 8–11μm make vertex reconstruction possible for
smallest scattering angles. The two spectrometer stages,
which are arranged around the magnets SM1 and SM2,
are both equipped with a variety of detectors for tracking,
calorimetry and particle identification. The target con-
sisted of 3mm of lead disks, which were deployed either as
one continuous disk or as two disks with 2mm and 1mm
thickness, respectively. The latter two target disks, which
were separated by 10 cm along the beam, allowed addi-
tional systematic studies. The present analysis uses events
recorded with the so-called multiplicity trigger that selects
at least two charged outgoing particles at scattering an-
gles smaller than 50mrad. For this purpose, a scintillator
disk of 5mm thickness and a diameter of 5 cm was placed
about 62 cm downstream of the target. The hits in this
scintillator had to be in coincidence with the beam trig-
ger and an energy deposit of several GeV in the hadronic
calorimeter HCAL2.

For the present data analysis, events are required to
have exactly three charged outgoing particles with charge
signature (−−+). These are assumed to be pions. A com-
mon vertex fit between these particles and the incoming
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Fig. 2. Distribution of the vertex positions along the beam axis
for the 3π final-state events with t′ < 0.001 (GeV/c)2. The
distributions of the reconstructed vertices for the two target
setups (solid and dashed lines) are complemented with vertical
thin lines indicating the cuts applied to the respective data
sets. The grey boxes represent the nominal thicknesses and
positions of the target disks. The numbers of entries in the two
histogram sets reflect the different measurement times with the
two target setups.

beam particle must be consistent with an interaction in
the lead target as indicated in fig. 2. The summed en-
ergy of the three outgoing pions E3π needs to match
the mean beam energy within ±4GeV to assure an ex-
clusive π−Pb → π−π−π+Pb reaction. About 1 million
events were recorded with t′ < 0.001 (GeV/c)2, i.e. in
the Primakoff t′ region. Their invariant 3π mass spec-
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0.493 GeV/c2 originates from in-flight decays of beam kaons
into the investigated final state.

trum is shown in fig. 3, where the main contributions
from diffractive production of the a1(1260) and π2(1670)
resonances are clearly visible. The low-mass region m3π <
0.72GeV/c2 has been the focus of the measurement of
chiral dynamics using the same data set [11]. The small
peak at m3π ≈ 0.493GeV/c2 originates from the in-flight
decays of beam kaons into π−π−π+.

For the extraction of the resonant components con-
tained in this mass spectrum, a partial-wave analysis
(PWA) is carried out as summarised in sect. 2.1. The spe-
cific features of a PWA at very low t′ are summarised in
sect. 2.2, followed by the presentation of the Primakoff
production of a2(1320) and π2(1670) in sect. 2.3. The mo-
mentum transfer distributions for the investigated mass
regions, i.e. 1.26GeV/c2 < m3π < 1.38GeV/c2 contain-
ing the a2(1320) and 1.50GeV/c2 < m3π < 1.80GeV/c2

containing the π2(1670), are presented in fig. 4. A sharp
increase is observed with t′ → 0, where the Primakoff
process contributes in addition to the dominant diffrac-
tive production. These figures demonstrate the necessity
of special methods to extract the Primakoff process.

2.1 Partial-wave analysis of the π−π−π+ system at
very low t′

In the first step of the partial-wave analysis, the data are
divided into bins of the invariant three-pion mass that in
the following is denoted by m. The experimentally ob-
served cross section Δσm(τ, t′), in terms of acceptance-
corrected intensity, is parameterised by

Δσm(τ, t′) =
1

L εX εresol

×
∑

ε=±1

Nr∑
r=1

∣∣∣∣∣
∑

i

T ε
ir(m)f

ε

i(t
′,m)ψ

ε

i(τ,m)

∣∣∣∣∣
2

.

(6)
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Fig. 4. Momentum transfer distributions in the investigated
mass regions containing (a) the a2(1320) or (b) the π2(1670).
The Primakoff region, t′ < 0.001 (GeV/c)2, is highlighted.

The symbol ψ
ε

i(τ,m) denotes the normalised decay am-
plitude of a particular partial wave i, depending only on
τ within the mass bin. Here, τ is the vector of the inde-
pendent phase-space variables that parameterise the final-
state kinematics, i.e. 5-dimensional for a three-body final
state. The normalisation of the decay amplitude is chosen
such that the integral of the amplitude squared over the
full phase space is equal to 1. Each decay amplitude is
multiplied by its corresponding t′ dependence f

ε

i(t
′,m):

ψ
ε

i(τ,m) =
ψε

i (τ,m)√∫
|ψε

i (τ,m)|2 dΦ(τ)

and

f
ε

i(t
′,m) =

f ε
i (t′,m)√∫

|f ε
i (t′,m)|2 dt′

. (7)

The t′ dependences are either following the experimental
data or are obtained from a dedicated Monte Carlo study
as explained later. At this stage, also resolution effects
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of the spectrometer are taken into account. The complex-
valued numbers T ε

ir(m) in eq. (6) are the transition ampli-
tudes that represent the strengths of the individual ampli-
tudes i and their phases. They are assumed to be constant
within each mass bin so that Δσm depends only on the
phase-space parameter vector τ . The parameterisation of
the cross section is optimised using T ε

ir as fitting param-
eters in an extended maximum-likelihood fit, taking into
account the geometrical acceptance of the spectrometer
obtained from a dedicated Monte Carlo simulation as de-
scribed in appendix A.1. Since the PWA is performed in
bins of mass m or momentum transfer t′, respectively, res-
olution effects in these variables are not unfolded by the
employed acceptance correction.

The decay amplitudes ψε
i (τ,m) of the three-pion final

states are parameterised in the isobar model by subse-
quent two-particle decays, i.e. the three-pion resonance
decays first into a single π− and a di-pion resonance, re-
ferred to as the isobar in the following, which decays fur-
ther into a π+π− pair. The amplitudes are given in the
Gottfried-Jackson reference system [12,13] and denoted as
JPCM ε{isobar}[L]π, giving the quantum numbers of the
three-pion resonance JPC , its spin projection M onto the
beam axis, its reflectivity ε, the isobar, and the angular
momentum L between the isobar and the unpaired π−.
The amplitudes are Bose-symmetrised in the two π−.

The reflectivity ε = ±1 describes the symmetry or
antisymmetry of the decay amplitude under a reflection
through the production plane. In the so-called reflectiv-
ity basis the amplitudes have the quantum numbers ε
and M ≥ 0 [14]. They are combinations of the two am-
plitudes with the customary quantum numbers +M and
−M . Parity conservation demands that the two contribu-
tions ε = ±1 are added incoherently. Natural parity of the
exchange particle holds for the photon (with total spin and
parity JP = 1−) and the pomeron (Regge trajectory with
P = (−1)J ), and this leads to the expectation of observing
only ε = +1. The assumption of natural parity exchange
leads to the appearance of JPC = 2++ resonances only
with M = 1, while e.g. for JPC = 2−+ resonances both
M = 0 and M = 1 are allowed.

The rank Nr introduces the number of independent
sets of coherent amplitudes. Choosing Nr > 1 allows
effectively for incoherence between contributing partial
waves as expected, e.g., for different helicity final states of
the unobserved recoil particle. However, in the kinematic
range under investigation we do not expect this to play a
role as we expect coherent scattering on the whole nucleus,
and thus set Nr = 1. Nevertheless, apparent incoherence
effects occur due to resolution. These are taken into ac-
count by the partial-coherence concept that is explained
in appendix A.2.

The physical parameters are extracted from the spin-
density matrix

ρε
ij =

∑
r

T ε
irT

ε∗
jr . (8)

In particular, its diagonal elements determine the intensi-
ties Ii of the specific amplitudes i, and the relative phases
ϕij between two amplitudes i and j are contained in the

non-diagonal elements (i �= j):

Iε
i = ρε

ii and ρε
ij = |ρε

ij | ei ϕε
ij . (9)

A partial-wave analysis of data covering only the very low
momentum transfer t′, as carried out here for the extrac-
tion of Primakoff contributions, has two particular fea-
tures in addition to the resolution effects that are dis-
cussed later.

First, there are two production mechanisms contribut-
ing at t′ ≈ 0, diffractive and Primakoff production. They
can be distinguished by the spin-projection M of the pro-
duced system. The t′ dependence of the cross section for
diffractively produced states with spin-projection M is
given [15] by

dσ/dt′ ∝ t′Me−b(m)t′ (with M ≥ 0), (10)

where b(m) is the slope that depends on the mass m of
the produced system as well as on the size of the tar-
get nucleus. Thus for events at lowest momentum trans-
fer t′ < 0.001 (GeV/c)2, only intermediate states with
M = 0 are produced diffractively, while diffractive produc-
tion with M = 1 is expected to be negligible. Primakoff
production populates intermediate states with M = 1 as
the helicities of quasi-real photons are λγ = ±1. The
spin projection M = 0 is suppressed for quasi-real pho-
tons of very small virtuality. Following the assumptions
listed above, the t′ dependences f ε

i (t′,m) will follow a pure
diffractive behaviour for M = 0 amplitudes and the pure
Primakoff shape folded with the experimental resolution
in case of M = 1 (see sect. 2.2).

Secondly, in addition to the (isobaric) decays of reso-
nances there are non-resonant scattering processes popu-
lating the same final state. In the case of quasi-real photon
exchange and for the low-mass region, these processes can
be calculated in Chiral Perturbation Theory (ChPT) [16,
17]. This was implemented as special amplitudes to the
PWA, and the tree-level calculations were probed suc-
cessfully up to m3π ≤ 0.72GeV/c2, see ref. [11]. Higher-
order ChPT calculations include loops and ρ contribu-
tions. They are expected to describe further non-resonant
contributions at higher masses, and thus are used for the
present analysis in addition to the chiral amplitude used
in the low-mass analysis [11] (see appendices A.3, A.4, and
table 4).

2.2 Features of t′ spectra at values of very low t′ and
resolution effects

Due to the high energy of the incoming beam, the outgo-
ing particles are strongly boosted in the forward direction,
and the opening angles between the decay particles of the
π−π−π+ final state are small. At very low momentum
transfer t′ ≈ 0, the scattering angle between the incom-
ing pion and the produced resonance is extremely small,
making the measurement sensitive to resolution effects.

The impact of the finite t′ resolution was studied using
a dedicated Monte Carlo (MC) simulation. Events gener-
ated with a t′ dependence according to eq. (1) have been
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Fig. 5. Illustration of the migration of events due to the lim-
ited resolution of the spectrometer in t′. The simulated events
follow the cross section given by eq. (1) with the form factor
introduced in sect. 1, as given by refs. [7,8] and [9]. For details
see text.

processed using the full chain of the simulation and re-
construction software. The distribution of both the gen-
erated and the reconstructed values of t′ of those events
that pass all analysis cuts are depicted in fig. 5 for the
mass window around the mass of the a2(1320) as an
example. The original shape of the cross section with
a sharp peak at tmin is modified significantly. For t′ <
0.001 (GeV/c)2, an approximately exponential behaviour
dσrec,Primakoff/dt′ ∝ exp(−bprim(m)t′) is observed for the
reconstructed Primakoff MC events. The slope parameter
bprim(m) was found to change from bprim(0.5GeV/c2) ≈
1500 (GeV/c)−2 to bprim(2.5GeV/c2) ≈ 700 (GeV/c)−2.
This experimentally expected t′ dependence is imposed
on the Primakoff amplitudes in the PWA by the factor
f

ε

i(t
′,m) in eq. (6) with f ε

i (t′,m) = exp(−1
2bprim(m)t′)

for all amplitudes with M = 1. In addition, the rescal-
ing factor εresol in eq. (5), which takes into account the
migration of events above or below the upper t′ limit, is
estimated from this study. This rescaling factor comple-
ments the calculation of CX used in eq. (5) when integrat-
ing eq. (2) over t′ as shown in eq. (4). Figure 5 depicts the
distribution following the cross section not containing res-
olution effects in grey and the experimentally expected
distribution marked in black. Both histograms are based
on the properties of fully reconstructed events only, as
the detection and reconstruction efficiencies are expected
to be taken care of by the acceptance correction of the
PWA, which is denoted by εX in eq. (5). The rescaling
factor εresol is given by the ratio of the integrals of the
grey and the black-marked histograms in the indicated
range t′ < 0.001 (GeV/c)2. It results in εresol ≈ 0.74.

The experimental t′ dependence for the observed
diffractive production was determined by statistical sub-
traction. For this method, the diffractive contribution was
modelled by dσdiff/dt′ ∝ exp(−bdiff(m)t′), due to the over-
all predominat diffractive M = 0 contribution in the data.
The t′ distributions were modelled as described above.
The full data set was divided into mass bins and fitted by

the sum of these two contributions, with bdiff(m) as a fit
parameter. The resulting trend from bdiff(0.5GeV/c2) ≈
420 (GeV/c)−2 to bdiff(2.5GeV/c2) ≈ 320 (GeV/c)−2 is
used for the t′ dependence of the diffractive M = 0 am-
plitudes in the PWA, i.e. the f

ε

i(t
′,m) in eq. (6).

An additional effect of the finite resolution at very low
t′ stems from the presence of two coherent production pro-
cesses with very different t′ dependence. The finite reso-
lution leads to a statistical mixing of events with different
t′ and thus to a partial loss of the coherence between the
different production amplitudes. This can be taken into
account by setting the rank Nr > 1 in eq. (6). However, in
the present analysis, amplitudes with M = 0 are observed
to be coherent with respect to one another, as are those
with M = 1. Thus Nr = 1 is actually chosen, while the
reduced coherence between these two sets of amplitudes
due to resolution is taken into account by the concept of
partial coherence (see appendix A.2).

Furthermore, at very small t′ the production plane de-
fined by the incoming pion and the outgoing system X
is known with low precision at small scattering angles.
In this case, the process is almost collinear so that the
production plane cannot be defined reliably and the con-
tributions from ε = +1 and ε = −1 are poorly distin-
guishable. Thus at the limit of the extremely small t′ ob-
served for the photon peak, the full intensity of the physi-
cal ε = +1 amplitude is reconstructed with approximately
equal amounts of ε = +1 and ε = −1 contributions for
each amplitude with M = 1. This introduces an artifi-
cial factor

√
2 in the amplitudes, which, however, is not

considered separately in the following. The total intensity
observed is thus contained and conserved in the incoher-
ent sum of these two contributions as stated in eq. (6).
This effect has been reproduced in a dedicated Monte
Carlo simulation, with data being generated with ampli-
tudes containing only positive reflectivity. Passing these
data through the standard simulation and reconstruction
chain, the same amount of negative reflectivity contribu-
tions appeared as in the experimental data.

2.3 Primakoff production of a2(1320) and π2(1670)

The PWA results related to the Primakoff production
of the a2(1320) are shown in fig. 6. The extracted in-
tensity of the 1++0+ρ[S]π decay amplitude, which is
known to contain the diffractively produced a1(1260), is
shown in fig. 6(a). The intensity of the 2++1+ρ[D]π de-
cay amplitude, where the a2(1320) is expected, is shown
in fig. 6(b). The relative phase between these two ampli-
tudes is shown in fig. 6(c). Here, the PWA was performed
in 40MeV/c2 mass bins and covered t′ < 0.001 (GeV/c)2.
The phase variation with respect to the 3π mass shows
a clear rise at m3π ≈ 1.32GeV/c2, i.e. at the nominal
mass of the a2(1320), indicating its resonant behaviour.
The change of this phase with the momentum trans-
fer t′ is extracted performing a separate PWA in bins
of t′ using only one mass bin that contains the major
part of the a2(1320). This mass bin covers the range
1.26GeV/c2 < m3π < 1.38GeV/c2, i.e. it is chosen sig-
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Fig. 6. Intensities of a1(1260) (top), a2(1320) (middle) and their relative phase (bottom) in bins of three-pion mass (left) and
t′ (right), depicting the Primakoff production of the a2(1320). For details see text.

nificantly broader than the usual 40MeV/c2. The mass
dependence is introduced by the respective Breit-Wigner
functions as factors in the decay amplitudes of a1(1260)
and a2(1320), while t′ dependences are not applied. In
fig. 6(d) and (e) the resulting intensities of the same am-
plitudes containing the a1(1260) and a2(1320), respec-
tively, are shown, this time in bins of t′. In fig. 6(f),
the relative phase between these two decay amplitudes
in bins of t′ shows the transition of the production pro-

cess from Primakoff production to diffractive dissocia-
tion of the pion into the a2(1320) in the depicted range
of t′. The latter is characterised by an approximately
constant phase at t′ > 0.006. In the region of interest
t′ < 0.001 (GeV/c)2, the relative phase Δϕ of the two
production amplitudes covers the range between 110◦ and
130◦. This indicates that interference of diffractive and
Primakoff production of the a2(1320) in this t′ range is
small.
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Fig. 7. Intensities of the diffractively produced π2(1670) with M = 0 (top), the π2(1670) with M = 1 (middle) and their
relative phase (bottom) in bins of three-pion mass (left) and t′ (right), showing the Primakoff production of the π2(1670) with
M = 1. For details see text.

Figure 7(a) shows the intensity of the 2−+0+f2[S]π
partial wave with M = 0, which contains the diffrac-
tively produced π2(1670), and fig. 7(b) the intensity of
the 2−+1+ f2[S]π amplitude with M = 1. Their relative
phase as obtained from the PWA is shown in fig. 7(c)
as a function of the three-pion mass. The phase shows
a constant behaviour around the nominal mass of the
π2(1670). This phase locking indicates the presence of the

same resonance π2(1670) in both spin projections M = 0
and M = 1, which are allowed for JPC = 2−+ ampli-
tudes for natural parity exchange as explained before.
Again, a separate PWA was performed in bins of momen-
tum transfer t′ while using a broad three-pion mass inter-
val covering the main part of the width of the π2(1670),
i.e. 1.50GeV/c2 < m3π < 1.80GeV/c2. For this PWA
fit the decay amplitudes of the significant partial waves
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Fig. 8. Total intensities of (a) the JPCM = 2++1 and (b) the JPCM = 2−+1 states decaying into f2[S]π in bins of t′. Both
are fitted by a sum of two exponentials to extract the fraction of Primakoff production of the a2(1320) and the π2(1670). The
full line refers in both cases to the sum of the two contributions. For details see text.

are multiplied by mass-dependent functions containing
sums of the relevant Breit-Wigner functions and addi-
tional background as given in appendix A.5. The relative
phase between the M = 0 and M = 1 components of the
π2(1670) (fig. 7(d,e,f)) demonstrates the transition from
Primakoff to diffractive production of the π2(1670) with
M = 1 in the depicted range of t′. Again, we observe the
relative phase being approximately 90◦ in the region of
interest t′ < 0.001 (GeV/c)2, which limits interference ef-
fects between diffractive and Primakoff production in this
t′ range. This allows the separation of the two produc-
tion processes by a fit with a sum of two non-interfering
contributions.

At this point we do not make any statement about
resonances in JPC = 1++ or JPC = 1−+ amplitudes with
M = 1. Such amplitudes are present in the fit (see table 4)
and collect non-negligible intensities, but their interpreta-
tion in terms of resonances is not obvious. The clarification
of their nature is beyond the scope of the present paper.

The total intensities of the amplitudes with JPCM =
2++1 in the ρ[D]π and JPCM = 2−+1 in the f2[S]π decay
channel are depicted in fig. 8. They are fitted by an in-
coherent sum of Primakoff and diffractive productions to
obtain the relative strengths of both contributions to be
evaluated in the indicated range t′ < 0.001 (GeV/c)2. This
procedure is justified by the expected relative phase of ≈
90◦ between the photon and pomeron amplitudes, which
is caused by the photon being real, while the pomeron
corresponds to imaginary potential due to the absorptive
nature of the strong interaction. For pomeron exchange,
no phase difference between M = 0 and M = 1 ampli-
tudes is expected. For this fit the Primakoff production is
parameterised by dσprim/dt′ ∝ exp(−bprim(m)t′) instead
of the extremely sharp form given by eq. (1), as discussed
in sect. 2.2. The diffractive contribution, in turn, is pa-
rameterised by σdiff ∝ t′ exp(−bdiff(m)t′), as for M = 1 in
eq. (10).

The resulting slopes amount to bprim(ma2) = (1292 ±
53) (GeV/c)−2 and bdiff(ma2) = (374 ± 25) (GeV/c)−2

for the a2(1320) (fig. 8(a)). The quoted fit uncertainties
take into account the error estimates from the PWA as
they are indicated on the data points in fig. 8. These
slope parameters are in fair agreement with the expecta-
tions from the simulation of Primakoff production, namely
bprim,MC ≈ 980 (GeV/c)−2 and bdiff,MC ≈ 370 (GeV/c)−2.
These expected values are obtained following the proce-
dure explained in sect. 2.2.

For the 2−+1f2[S]π total intensity in the mass region
of the π2(1670) (fig. 8(b)), the separation of the two contri-
butions is difficult as the respective parameters are highly
correlated. Therefore, in our analysis we imposed the con-
dition that the fractions of Primakoff and diffractive con-
tributions are equal at that value of t′, where the rela-
tive phase between the M = 0 and M = 1 amplitudes
(fig. 7(f)) is 45◦ below the phase at t′ ≈ 0.01 (GeV/c)2.
This is approximately achieved limiting the parameter
range to bprim ≥ 750 (GeV/c)−2. It results in bdiff =
(421 ± 20) (GeV/c)−2 and bprim = 750 (GeV/c)−2 at
its lower limit, in rather good agreement with the ex-
pected values of bdiff,MC ≈ 350 (GeV/c)−2 and bprim,MC ≈
760 (GeV/c)−2 from the procedure described in sect. 2.2.

The ratio σprim/σall is obtained by integrating the
contributions in the range t′ < 0.001 (GeV/c)2, yield-
ing 0.97 ± 0.01 for the a2(1320) and 0.86 ± 0.07 for the
π2(1670). The uncertainties quoted are obtained from
varying the upper and lower limits of bprim and bdiff . For
the a2(1320), fits are performed with limiting bprim ≤
980 (GeV/c)−2 and requiring bdiff ≥ 320 (GeV/c)−2. For
the π2(1670), fits with bprim down to 500 (GeV/c)−2 are
taken into account. This is done to account for the neglect
of interference between the Primakoff and the diffractive
contributions.

3 Extraction of the radiative widths

For the extraction of the radiative width of a resonance,
we integrate eq. (2) over the range 0 (GeV/c)2 < t′ <
0.001 (GeV/c)2 and over the relevant mass ranges con-
taining the a2(1320) and π2(1670).



Eur. Phys. J. A (2014) 50: 79 Page 11 of 19

]2 [GeV/cπ3m
0.5 1 1.5 2 2.5

)
m(

πρdy
n

f

−310

−210

−110

1

10

π(770)[D]ρ→(1320)2a

(p)2

L
using F

)τ(Φd2|Ψ|∫using

]2 [GeV/cπ3m
0.5 1 1.5 2 2.5

)
m(

π 2fdy
n

f

−310

−210

−110

1

10

π(1270)[S]2 f→(1670)2π

(p)2

L
using F

)τ(Φd2|Ψ|∫using

)b()a(

Fig. 9. Comparison of the dynamical factors for (a) the a2(1320) → ρ(770)[D]π and (b) the π2(1670) → f2(1270)[S]π decays
using angular momentum barrier factors or

R

|ψ|2dΦ(τ) (for details see text). The lines extent in the latter case, with non-zero

values for fdyn, down to the three-pion threshold m3π = 3mπ ≈ 0.42 GeV/c2, while in the case of FL the range is limited to
m3π > mπ + m{isobar}.

3.1 Parameterisation of mass-dependent widths

An important ingredient for the determination of the ra-
diative widths is the accurate mathematical description
of the mass spectra observed. Apart from the damping of
higher masses introduced by tmin appearing in eq. (2),
this concerns in particular the total and partial mass-
dependent decay widths. They both enter into fits of the
PWA intensities containing Breit-Wigner parameterisa-
tions, which are used for the extraction of NX/εX and
for the calculation of the normalisation constant CX that
is needed for the evaluation of eq. (5). The exact line shape
has to describe properly the tails towards lower and higher
masses which are very asymmetric, as we assume that
those are not mocked up by background but belong to
the resonances under investigation.

If a resonance decays only via two-body decays into
particles, the width of which can be neglected, and if the
decay channels do not interfere, the mass-dependent total
width of the resonance can be written as

Γtotal(m) =
∑

n

Γn(m) =
∑

n

BRn
m0

m

pn

p0 n

F 2
L(pn)

F 2
L(p0 n)︸ ︷︷ ︸

fdyn
n (m)

Γ0

with Γ0 ≡ Γtotal(m0). (11)

This expression contains a sum over the partial widths Γn

of all possible decay channels n of this resonance (with
their corresponding normalised branching fractions BRn).
The two-body breakup momentum pn is the momentum of
the daughter particles of a particular decay n of a parent
state with mass m in its centre-of-mass frame, and L is
the orbital angular momentum between the two daughter
particles. The symbol FL specifies the angular momentum
barrier factors as given by ref. [18]. The additional index
“0” denotes the values of width and breakup momentum
at the nominal mass m0 of the resonance. In cases where
the branching fractions are unknown, a Breit-Wigner func-

tion with constant width Γ0 is usually chosen as an ap-
proximation.

A more accurate parameterisation of the mass depen-
dence of Γn(m) is preferable especially in the case of
multi-particle decays with short-lived decay products, so
that the widths of the daughter particles can be taken
into account properly. Hence, in order to include properly
also sub-threshold contributions, the term pnF 2

L(pn) is re-
placed by the integral over the respective decay amplitude∫
|ψn|2dΦ(τ) [19]. The effect is depicted in fig. 9. The de-

scription using angular momentum barrier factors (from
eq. (11), dashed lines) starts from the nominal {isobar}π
thresholds only, which are ≈ 0.9GeV/c2 for the ρπ de-
cay and ≈ 1.5GeV/c2 for the f2π decay. The description
based on

∫
|ψn|2dΦ(τ) for the considered decay channels

n = ρπ and n = f2π starts from the summed mass of the
final state particles (i.e. ≈ 0.42GeV/c2 for three pions),
so that it describes the low-mass tail which is consider-
able, particularly for the π2(1670). In the figure and in
the following, the index “n” is dropped for pn and p0n,
and those are understood to be the appropriate breakup
momenta.

In many cases, the shape of a specific resonance does
not support the use of the term m0/m in eq. (11), which
introduces additional damping at higher masses. Refer-
ence [20] even suggests that the term (m0/m)α may be
used with arbitrary α adjusted to the data. In this analy-
sis, where also the damping behaviour of m resulting from
the integrated t′ dependences from eq. (2) is taken into ac-
count, a better fit to the mass spectrum is obtained when
omitting the term m0/m in the parameterisation of the
mass-dependent widths.

The mass-dependent partial width of the X → πγ de-
cay, Γπγ(m), reads

Γπγ(m) =
p

p0

F 2
L(p)

F 2
L(p0)︸ ︷︷ ︸

fdyn
πγ (m)

Γ0(X → πγ), (12)
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where we use L = 2 (D-wave) and L = 1 (P -wave) for
the πγ decays of the a2(1320) and π2(1670) resonance,
respectively. The use of the FL-dependent factor, which
is depicted in fig. 10, may be disputible. However, it has
an effect of only about 1% and 3% on the final result for
the a2(1320) and the π2(1670), respectively, compared to
using fdyn

πγ (m) = (p/p0)3 as suggested in ref. [1].
For the mass-dependent partial decay widths Γfinal(m)

the widths of the isobars have to be taken into account,
i.e. they are parametrised as

Γfinal(m) =
∫
|ψfinal(m, τ)|2dΦ(τ)∫
|ψfinal(m0, τ)|2dΦ(τ)︸ ︷︷ ︸

fdyn
π{isobar}(m)

× Γ0(X → π{isobar}). (13)

The a2(1320) is observed in the total intensity of the
JPCM = 2++1 waves decaying into ρ[D]π, i.e. {isobar} =
ρ(770) and L = 2, so that ψfinal = ψ2++1+ρ(770)[D]π is used.

The total width Γtotal(m) of the a2(1320) is derived
from eq. (11) using the constant Γ0 = Γ0(m0(a2)). The
total width is taken as the sum of the partial widths of the
two main decay channels ρπ and ηπ. As the other decay
channels are neglected as described below, we calculate
“renormalised” branching fractions BRn from their known
branching fractions BRPDG

n from ref. [6]. Those are given
in table 1 together with the used parameterisations of the
phase space. The ωππ decay channel (BRPDG

ωππ = 0.105)
and the KK̄ decay channel (BRPDG

KK̄ = 0.049) are not
taken into account, as the treatment of the ωππ decay
in the framework of two-particle decays is delicate due
to unknown branching fractions into b1(1235)π and ωρ,
which both are sub-threshold at the nominal mass of the
a2(1320). The KK̄ channel has an even smaller branching
fraction than the ωππ decay channel and its radiative de-
cay width is not included in Γtotal here as well due to its
smallness, BRπγ < 0.01.

The π2(1670) is observed in the total intensity of
the JPCM = 2−+1 amplitudes decaying into f2[S]π,

Table 1. Branching fractions BRPDG
n and BRn and param-

eterisations of phase space fdyn
n (m) for the two main decay

channels ρπ and ηπ, as used for the description of the mass-
dependent total width of the a2(1320).

n BRPDG
n BRn fdyn

n (m)

ρ[D]π 0.701 0.82

R

|ψ(m)|2dΦ(τ)
R

|ψ(m0)|2dΦ(τ)

η[D]π 0.145 0.18
p

p0

F 2
2 (p)

F 2
2 (p0)

i.e. {isobar} = f2(1270) and L = 0, so that ψfinal =
ψ2−+0+f2(1270)[S]π is used.

The parameterisation of the mass-dependent width
of the π2(1670) is more complicated. The π2(1670) de-
cays mainly into 3π (BRPDG

3π = 0.96), which includes de-
cays into f2π (BRPDG

f2π = 0.56), ρπ (BRPDG
ρπ = 0.31), σπ

(BRPDG
σπ = 0.11) and (ππ)Sπ (BRPDG

(ππ)Sπ = 0.09) [6]. All
these decays are also observed in the COMPASS exper-
iment. However, the incoherent sum in eq. (11) is ques-
tionable for the different 3π final states, as they interfere
significantly. In addition, the branching fractions BRPDG

are quoted for “3π”, but do not distinguish between the
charged and the neutral channel, where they are expected
to differ due to the different isospins of ρ and f2. For this
analysis, we only take into account the decay π2(1670) →
f2(1270)[S]π with its branching fraction BRPDG

f2π = 0.56
taken from ref. [6]. For the mass-dependent width we
use Γtotal(m) = fdyn

final(m)Γ0(m0) since the exact shape of
the Breit-Wigner function does not matter for the signal
strength of the π2(1670) at the current level of accuracy.

3.2 Acceptance-corrected PWA intensities

In the first step the acceptance-corrected intensities
NX,prim/εX used in eq. (5) are determined. The inten-
sities in mass bins obtained from the PWA (fig. 11)
are fitted by the mass-dependent Breit-Wigner terms
from eq. (2), while integrating over 0 (GeV/c)2 < t′ <
0.001 (GeV/c)2. The mass-dependent widths Γπγ(m),
Γfinal(m) and Γtotal(m) are evaluated using the terms
fdyn

πγ (m), fdyn
π{isobar}(m), and

∑
n BRnfdyn

n (m) as explained
in sect. 3.1, m0 and Γ0 are introduced as fit parame-
ters, and Γ0(X → πγ) is contained in the fit parame-
ter for the overall normalisation of the Breit-Wigner. In
the fitting procedure the bin width of 40MeV/c2 and the
mass resolution are taken into account. The mass res-
olution amounts to ≈ 16MeV/c2 for the a2(1320) and
≈ 18MeV/c2 for the π2(1670). More precisely, the mass
resolutions of both resonances are parameterised by a
sum of three Gaussian distributions, the parameters of
which were obtained from the MC simulation described
in sect. 2.2. The fit to the intensities shown in fig. 11
yields the following parameters. For the a2(1320) we ob-
tain the mass m0 = (1319±1)MeV/c2 and the width Γ0 =
(105±4)MeV/c2 with a fit quality of χ2/NDF = 59.9/24,
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Fig. 11. Total intensities in mass bins: JPCM = 2++1 from ρ[D]π decay and JPCM = 2−+1 from f2[S]π decay. The error
bars show the statistical uncertainties of the PWA. The Breit-Wigner fits used for the determination of the intensities of (a)
the a2(1320) and (b) the π2(1670) are shown as well.

and for the π2(1670) the mass m0 = (1684 ± 11)MeV/c2

and the width Γ0 = (277 ± 38)MeV/c2 with a fit quality
of χ2/NDF = 20.0/14.

From these fits, the following acceptance-corrected in-
tegrated intensities NX/εX are obtained that are used for
the evaluation of eq. (5). The intensity for the a2(1320)
(2++1ρ[D]π) is integrated over the range 0.92GeV/c2 <
m3π < 2.00GeV/c2 using the fit function shown in fig. 11,
which results in Na2/εa2 = 44 601 ± 798. The uncer-
tainty represents the statistical uncertainty of the PWA
fits in mass bins, which is propagated to the param-
eters of the Breit-Wigner fit. After the correction for
σprim/σall = 0.97 we obtain the number of Primakoff-
produced events Na2,prim/εa2 = 43 262 ± 774. The num-
ber of π2(1670) events is taken from the 2−+1f2[S]π in-
tensity integrated over the range 1.44GeV/c2 < m3π <
2.12GeV/c2, which results in Nπ2/επ2 = 6977 ± 435.
Applying σprim/σall = 0.86, the number of Primakoff-
produced π2(1670) is Nπ2,prim/επ2 = 6000 ± 374 in this
decay channel.

3.3 Normalisation constants

In order to calculate the normalisation constant CX , which
is needed for the evaluation of eq. (5), we apply eqs. (2)
and (4) using Γ (πγ) = fdyn

πγ (m) Γ0(X → πγ), with
fdyn

πγ (m) from eq. (12), Γfinal(m) as given in eq. (3) with
fdyn
final(m) = fdyn

π{isobar}(m) from eq. (13) and (CG BR) di-
vided out here, and Γtotal(m) as given in sect. 3.1. The
constant is obtained integrating over the same mass range
m ∈ [m1,m2] as used for the extraction of NX/εX , and
over 0 (GeV/c)2 < t′ < 0.001 (GeV/c)2 which reflects the
t′ cut that is applied to the data:

CX =
∫ m2

m1

∫ t′max

0

16αZ2(2J+1)
(

m

m2 − m2
π

)3
t′

(t′ + tmin)2

×
m2

0 fdyn
πγ (m) fdyn

final(m)Γ0(m0)
(m2 − m2

0)2 + m2
0Γ

2
total(m)

F 2
eff(t′) dt′ dm. (14)

For the numbers given in the following, the form factor
F 2

eff(t′) and the Weizsäcker-Williams term are replaced by
|Fu

C(t′, tmin)|2 from refs. [7,8] as discussed before. For Ca2

we use m0 = 1320MeV/c2, Γ0(m0) = 107MeV/c2, and
obtain Ca2 = 2236.23mb/GeV. The constant Cπ2 is cal-
culated using m0 = 1672MeV/c2, Γ0(m0) = 260MeV/c2,
and Γtotal(m) is evaluated using the decay into f2π only,
which results in Cπ2 = 579.83mb/GeV.

3.4 Luminosity determination using the beam kaon
flux

The determination of the absolute production cross sec-
tion of the a2(1320) and the π2(1670) requires the knowl-
edge of the luminosity, i.e. the (well-known) thickness of
the lead target and the incoming beam flux. This flux is
not monitored precisely, and the absolute trigger and de-
tector efficiencies are only partly known, so that the abso-
lute beam flux is not determined reliably for the present
data. Instead, the effective beam flux, which takes into
account spill structure and dead time, is determined with
good precision by using K− → π−π−π+ decays observed
in the target region. These decays originate from the kaon
component in the negative hadron beam and are contained
in the data set preselected for the 3π production analysis,
i.e. in the same final state (see fig. 3). As the systematics
concerning trigger and detector efficiencies are the same
as for the 3π production from incoming pions, they cancel
in the ratio of the two data sets.

For better statistical precision, the cut on the decay
vertex position is relaxed with respect to the usual cut
for interactions in the target. Figure 12(a) presents the
resulting invariant 3π mass spectrum that shows a clean
kaon signal at m3π ≈ 0.493GeV/c2. The number of kaons
observed is obtained after subtraction of the small back-
ground that is estimated by a linear fit to the mass spec-
trum near the peak and extrapolated beneath the kaon
signal.
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Fig. 12. Luminosity determination from the in-flight decays of beam kaons. Reconstructed invariant mass spectrum (a) and
decay vertex positions (c) for the real data, and for simulated kaon decays in the target region (b,d).

The corresponding decay vertex distribution in
fig. 12(c) demonstrates that these vertices are recon-
structed in free space along the beam direction. At the
downstream (right) edge the distribution vanishes at
the position of the charged-particle multiplicity counter
acting as the trigger counter. At the upstream (left) edge
the positions of the beam telescope detectors measuring
an incoming beam track limit the fiducial decay volume.
The contribution of the small background stemming
from pion interactions in the lead target is obtained
from the vertex distribution in the neighbouring mass
region 0.52GeV/c2 < m3π < 0.57GeV/c2 as indicated
in fig. 12(a), scaled according to the expected intensity
below the peak of the mass spectrum, and subtracted.
The resulting distribution is quite flat, as expected, but
shows a small drop in the region just upstream of the
lead target. This can be explained by multiple scattering
of the three pion tracks in lead, which leads to a local
broadening of the decay vertex distribution. The choice of
the range of positions of reconstructed decay vertices in
[−350, 270] cm (shaded area in fig. 12(c)) assures uniform
reconstruction efficiency.

These mass and decay vertex distributions were con-
firmed by a dedicated full MC simulation of kaon decays in
the respective region of the COMPASS spectrometer. Fig-
ure 12(b) depicts the corresponding invariant mass distri-
bution of the reconstructed kaon decays. The contribution

Table 2. Summary of estimated statistical and systematic
uncertainties for the measurement of the radiative widths of
a2(1320) and π2(1670).

a2(1320) π2(1670)

Statistical 1.8% 6.2%

Systematic

Diffractive background 1.2% 7.4%

Kaon normalisation 6.0 % 6.0 %

PWA models 5.0% 7.7%

Parameterisation mass-dep. fit 3.2% 3.1%

Radiative corrections 8.0 % 8.0%

Quadratic sum 11.7% 15.0%

from pion interactions in the target, which is present in the
experimental data as smoothly rising background, is ab-
sent here. The shape of the reconstructed kaon mass spec-
trum is precisely reproduced, including the broad part at
the base which is traced back to kaons decaying upstream
of the lead target. Figure 12(d) presents the spatial distri-
bution of simulated and reconstructed kaon decay vertices,
confirming the correct choice of the fiducial decay volume.
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Table 3. The values for the radiative widths of the a2(1320) and the π2(1670) from this analysis, compared to previous
measurements and theoretical predictions.

a2(1320) π2(1670)

This measurement (358 ± 6 ± 42) keV (181 ± 11 ± 27) keV · (0.56/BRf2π)

SELEX [21] (284 ± 25 ± 25) keV

S. Cihangir et al. [24] (295 ± 60) keV
E.N. May et al. [25] (0.46 ± 0.11) MeV

VMD model [1] (375 ± 50) keV

Relativ. Quark model [2] 324 keV

Cov. Osc. Quark model [3] 235 keV

Cov. Osc. Quark model [4] 237 keV 2 values: 335 keV and 521 keV

The acceptance for kaon decay events is εK ≈ 0.459,
calculated from the ratio of number of reconstructed kaon
decays (with all cuts applied) to simulated decays in the
same spectrometer region as used for the kaon flux anal-
ysis of the experimental data. Using the thickness of the
lead target of 3mm, we determine the integrated effective
luminosity

εK L = εK

∫
Ldt = 9.55 × 104 mb−1. (15)

The relative uncertainty on this number is estimated to be
6%, with contributions from the uncertainty of the kaon
fraction in the negative hadron beam of about 5%, an
uncertainty on the branching fraction of K− → π+π−π−

of less than 1%, and the uncertainty on the number of
kaon decays in the analysed data set of less than 1%. The
statistical uncertainty of the luminosity determination is
added in quadrature to the linear sum of the two other
uncertainties.

3.5 Results

The radiative widths for both resonances are calculated
using eq. (5) with the corresponding cross sections given
by eq. (4). For the a2(1320), the radiative width is cal-
culated using the parameter εresol = 0.742 determined by
the Monte Carlo simulation shown in sect. 2.2, BRPDG

ρπ =
0.701, and the squared Clebsch-Gordan coefficient CG =
1
2 . The obtained value for the radiative width is Γ0(a2 →
πγ) = 358 keV. The radiative width of the π2(1670) is de-
termined using BRPDG

f2π = 0.56, CG = 2
3 , εresol = 0.736,

which results in Γ (π2 → πγ) = 181 keV depending on the
true BRf2π, i.e. to be multiplied by 0.56/BRf2π.

The relative statistical and systematic uncertainties
are summarised in table 2. The statistical uncertainties
are obtained from the uncertainty of the Breit-Wigner fits
to the related total intensities from fig. 11. The system-
atic uncertainties have five contributions that are added
in quadrature. The uncertainties on the fraction of diffrac-
tive background, determined by σprim/σall, and the uncer-
tainty from the kaon normalisation were discussed above.

The systematic uncertainties related to the variation
of the model used for the PWA fits were derived compar-
ing the total intensities obtained from models using either
different thresholds for the 1++1 amplitudes or an addi-
tional 2++0−ρ[D]π amplitude with respect to the nomi-
nal fit model. The parameterisation of the mass-dependent

widths covers again several aspects. The systematic uncer-
tainty related to the fits determining the resonance param-
eters via Breit-Wigner functions covers different parame-
terisations of the mass dependence of the widths, as well
as the inclusion or omission of the factor m0/m and/or the
tmin dependent term. The differences between the param-
eterisation of the phase space by the traditional angular
momentum barrier factors and the phase space respect-
ing the non-zero width of the isobars were evaluated. In
addition, for the a2(1320) we take into account also the
difference between our approach and a simplistic descrip-
tion of the a2(1320) shape given by the decay into ρπ
only (i.e. neglecting the ηπ decay), as implemented, e.g.,
in ref. [21]. The fifth contribution to the systematic uncer-
tainties originates from radiative corrections as discussed
below. The employed PWA tools did not include possible
relativistic effects on the amplitude parameterisation as
described in ref. [22].

There exists no full QED correction of the pion and
resonance interaction with the lead nucleus as Zα is “not
small”. From the size of the correction of about 20% and
the omission of any further radiative corrections, as in
ref. [11], we conservatively estimate an 8% contribution
to the systematic uncertainty [23]. As the only way to re-
duce this uncertainty, we see a measurement on a medium-
heavy nucleus, where the Primakoff contribution is still
sizeable but the discussed Coulumb correction has a mi-
nor impact.

Our final results for the radiative widths of the
a2(1320) and the π2(1670) are listed in table 3. Here and
in the following, the first uncertainty denotes the statis-
tical and the second the systematic one. The value for
the a2(1320) is Γ0(a2(1320) → πγ) = (358 ± 6 ± 42) keV,
where |Fu

C(t′, tmin)|2 from refs. [7,8] is used. If F 2
eff(t′) in

eq. (2) is approximated as F 2
eff(t′) = j2

1(t′) for the lead
target, i.e. the Coulomb correction is not applied, we ob-
tain Γ0(a2(1320) → πγ) = (312 ± 6) keV. Most earlier
measurements reported lower values compatible with this
value as given in table 3. The authors of ref. [21] report
to have taken into account the Coulomb corrections and
they estimated that it had “minor impact” on their result
(see table 3). Our calculation, however, shows that the ef-
fect is 24% for our experiment and 15% for the conditions
of the SELEX experiment. The result for the π2(1670) is
Γ0(π2(1670) → πγ) = (181± 11± 27) keV · (0.56/BRf2π).
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In the case that F 2
eff(t′) = j2

1(t′) is used, we calculate
Γ0(π2(1670) → πγ) = (151 ± 9) keV · (0.56/BRf2π).

4 Conclusions

We have measured the radiative widths of the a2(1320)
and π2(1670) resonances produced in pion-nucleus inter-
actions via the Primakoff mechanism using a partial-wave
analysis for a clean identification of the two states. The
value for the a2(1320) is Γ0(a2(1320) → πγ) = (358 ±
6±42) keV. Comparing our measurement with theoretical
predictions, we find our result consistent with the calcu-
lation from the VMD model given in ref. [1], while pre-
dictions from quark models are substantially lower. For
the first time we present a value for the radiative width of
the π2(1670), Γ0(π2(1670) → πγ) = (181 ± 11 ± 27) keV ·
(0.56/BRf2π). This is the first observation of the radiative
width of an E2 transition in meson spectroscopy, which
may provide constraints for further model calculations.
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N. Kaiser (TUM) for his helpful comments.

Appendix A.
Appendix A.1. The extended maximum-likelihood fit

The physics interpretation of the experimental data is de-
veloped in terms of simple models based on eq. (6). Within
these models, the transition amplitudes T ε

ir have to be op-
timised individually for each mass bin Δmfit such that the
best possible agreement of Δσm(τ, t′) with the distribu-
tion of the experimental data in the respective mass bin
is achieved. This is realized by using the extended like-
lihood method to maximise the following expression for
every mass bin Δm:

lnL =
Nevents∑

n=1

lnΔσmn
(τn, t′n)

−
∫

Δσm(τ, t′) η(τ,m, t′)dΦ(τ) dmdt′

︸ ︷︷ ︸
=Neventsfor the converged fit

=
Nevents∑

n=1

ln
[ ∑

ε,r

∑
ij

T ε
irT

ε∗
jr

f
ε

i(t
′
n,mn)ψ

ε

i(τn,mn)f
ε∗
j (t′n,mn)ψ

ε∗
j (τn,mn)

]

−
∑
ε,r

∑
ij

T ε
irT

ε∗
jr Iε

ij . (A.1)

The pre-calculated normalisation integrals are given by

Iε
ij =

∫
f

ε

i(t
′,m)ψ

ε

i(τ,m)f
∗ε

j (t′,m)ψ
∗ε

j (τ,m)

×η(τ,m, t′)dΦ(τ) dmdt′. (A.2)

For pairs of individual amplitudes i and j, the integration
is performed over the phase space τ , the three-pion mass
m inside Δmfit, and the t′ range used in this analysis.
The expression f ε

i (t,m)ψε
i (τ,m) is evaluated using phase-

space Monte Carlo events. Their number exceeds the ex-
perimental number of events by typically a factor 5–10,
such that their statistical uncertainty can be neglected.
The factor η(τ,m, t′) takes into account the acceptance of
the spectrometer. Note that the integral in eq. (A.2) is
normalised such that if η(τ,m, t′) = 1 then Iij = 1 for
i = j, and Iij = 0 for i �= j. With this normalisation the
fitted number

∑
r T ε

irT
ε∗
jr refers to the number of events in

a partial wave i, cf. eq. (9).
The fitting procedure is carried out for each mass

bin individually, with typically 10–50 independent fit at-
tempts with random starting values of the parameters per
mass bin until the best fit yields optimized sets of T ε

ir with
their statistical uncertainties.

Appendix A.2. The concept of partial coherence

Incoherence effects may be observed in a PWA of experi-
mental data, even if a coherent production process takes
place. In the data presented in this paper, these effects
are related to the resolution effects discussed in sect. 2.2.
In these cases, using Nr > 1 in eq. (6) often allows for
too much freedom between the production amplitudes T ε

ir
that appear Nr times in the PWA fit. Instead, the ob-
served incoherence can be taken into account by using
partial coherences. This allows limited coherence between
selected sets of decay amplitudes and thus reweighting of
individual off-diagonal terms in the coherent sum, as il-
lustrated by:

∑
ij

Ti T ∗
j ψi ψ∗

j →
∑
ij

rij Ti T ∗
j ψi ψ∗

j . (A.3)

Here, rij ≤ 1 are real numbers that reflect the reduc-
tion of coherence between the decay amplitudes i and j,
with rij = rji. They decrease the contribution of the in-
terference of the amplitudes i and j, without introducing
additional phases as Nr > 1 does. These parameters are
usually also fitted. The intensities of the individual decay
amplitudes are preserved by fixing rii ≡ 1.

Appendix A.3. Parameterisation of the ChPT
amplitude

The transition amplitude A of a process contributing to
the reaction π−γ → π−π−π+ has the general form

A =
2e

m2
π

(εεε · q1A1 + εεε · q2A2). (A.4)

Here q1 and q2 are the three-momenta of the two outgo-
ing π− in the Gottfried-Jackson reference system, which
are complemented with q3 and p1, the three-momenta of
the outgoing π+ and the incoming π−, respectively, and
k̂ = (0, 0,−1), the unit vector of the photon momentum
k. The reference system is determined in the rest frame
of the 3π system. Its z-axis is in the direction of the



Eur. Phys. J. A (2014) 50: 79 Page 17 of 19

incoming beam particle, the y-axis perpendicular to the
production plane, i.e. given by precoil× ẑ with precoil being
the three-momentum of the recoil particle, and x̂ = ŷ× ẑ.
Equation (A.4) uses the elementary electric charge e, the
transverse polarisation vector of the photon εεε, and the
amplitudes A1 and A2 that contain the dynamical infor-
mation. The calculation is performed using the radiation
gauge, where εεε · k̂ = 0. When the cross section σ is calcu-
lated, the amplitude A is squared and the average of the
transverse polarisation states of the photon is evaluated,
which leads to the following square of the vector product:

σ ∝ [(A1q1 + A2q2) × k̂]2. (A.5)
The amplitudes A1 and A2 are expressed in terms of the
dimensionless Mandelstam variables s = (p1 + k)2/m2

π,
s1 = (q1+q3)2/m2

π, s2 = (q2+q3)2/m2
π, t1 = (k−q1)2/m2

π

and t2 = (k − q2)2/m2
π. The amplitudes A1 and

A2 transform into each other by the relation
A2(s, s1, s2, t1, t2) = A1(s, s2, s1, t2, t1).

For the implementation into the PWA the amplitude
A is represented in the reflectivity basis. The ChPT am-
plitude employed in our analysis is implemented as

Ψ ε=+1
ChPT =

1√
s − 1

(A1q1[x] + A2q2[x]) (A.6)

and

Ψ ε=−1
ChPT =

1√
s − 1

(−A1q1[y] − A2q2[y]), (A.7)

where qi[j] is the j-component of the momentum qi in the
Gottfried-Jackson reference system. The term 1/

√
s − 1

originates from the flux factor in the cross section.
The ChPT amplitude employed in the presented

PWA takes into account the tree-level calculation given
in ref. [16], the calculation of loops and the necessary
counterterms from ref. [17], and also ρ-exchange contri-
butions. The ρ-exchange contribution to A1 of eqs. (A.6)
and (A.7), which were provided by ref. [23], are explicitely
written down as

Aρ
1 =

g2
ρπ

b2(3 − s − t1 − t2)

×
[
(2s + 1 − 2s2 − s1 + t1)(s − 2 − s1 + t2)2

b + s − 2 − s1 + t2 − Σρ(2 − s + s1 − t2)

+
(2s + 1 − 2s1 − s2 + t2)(s − 2 − s2 + t1)2

b + s − 2 − s2 + t1 − Σρ(2 − s + s2 − t1)

]

+
g2

ρπ

b2(t1 − 1)

[
(2s − 2s1 − s2 + t1 + 2t2 − 1)s2

2

b − s2 − Σρ(s2)

+
(s + 1 − s1 − 2s2 + t1 + t2)(s − 2 − s1 + t2)2

b + s − 2 − s1 + t2 − Σρ(2 − s + s1 − t2)

]

+
g2

ρπ

b2

[
s2(1 − s2 − t2)
b − s2 − Σρ(s2)

+
s1(s − 2 − 2s1 + t2)

b − s1 − Σρ(s1)

+
(s2 + 1 − t1)(s − 2 − s2 + t1)

b + s − 2 − s2 + t1 − Σρ(2 − s + s2 − t1)

]
.

(A.8)

Table 4. The set of decay amplitudes used for the PWA fit
for the extraction of the intensities of a2(1320) and π2(1670).

JPCM ε L {Isobar} π Thr. [GeV]

0−+0+ S (ππ)sπ –

0−+0+ S f0(980)π 1.12

0−+0+ P ρπ –

0−+0+ D f2π 1.24

0−+0+ S f0(1500)π 1.64

1++0+ S ρπ 0.48

1++0+ P f2π 1.40

1++0+ P f0(980)π 1.24

1++0+ P (ππ)sπ –

1++0+ D ρπ 1.04

1++1+ S ρπ 0.76

1++1+ P (ππ)sπ 0.92

1−+1+ P ρπ 1.48

2++1+ D ρπ 0.92

2−+0+ S f2π 1.24

2−+0+ P ρπ 0.80

2−+0+ D (ππ)sπ 1.32

2−+0+ D f2π 1.52

2−+0+ F ρπ 1.28

2−+1+ S f2π 1.38

2−+1+ P ρπ 1.28

2−+1+ D (ππ)sπ 1.24

2−+1+ F ρπ 1.52

3++0+ P f2π 1.52

3++0+ D ρπ 1.52

ChPT trees+loops+rho ε = +1 < 1.56

1++1− S ρπ 0.76

1++1− P (ππ)sπ 0.92

1−+1− P ρπ 1.48

2++1− D ρπ 0.92

2−+1− S f2π 1.36

2−+1− P ρπ 1.28

2−+1− D (ππ)sπ 1.24

2−+1− F ρπ 1.52

ChPT trees+loops+rho ε = −1 < 1.56

Kaon decay < 0.56

Background –



Page 18 of 19 Eur. Phys. J. A (2014) 50: 79

Table 5. Parameters used in eq. (A.12) to describe the mass dependence of decay amplitudes in the π2(1670) mass region
considered in the analysis described in sect. 2.3.

Amplitude(s) mj Γj αj p4,j p5,j p6,j

JPCM ε{isobar}[L]π [GeV/c2] [GeV/c2] [(GeV/c2)−1]

0−+0+(ππ)S [S]π 1.8188 0.23117 4.5104 43.180 12512.0 −43305.0

0−+0+f0(980)[S]π 1.8094 0.23515 −0.36871 28.042 3.0863 −0.57855

0−+0+ρ[P ]π 1.5150 0.20004 1.1676 47.787 43.133 −162.45

1++0+ρ[S]π 1.3051 0.31616 7.3830 101.58 238700.0 23925.0

1++0+ρ[D]π 1.5943 0.26680 1.5255 53.629 −77.010 −524.38

1++0+(ππ)S [P ]π 1.3763 0.74318 0.49296 89.914 76.893 −17.233

1++0+f2(1270)[P ]π 1.6815 0.25355 1.3663 34.721 −33.388 −232.13

2−+0+f2(1270)[S]π

1.672 0.260 – – – –
2−+0+ρ[P/F ]π

2−+1±f2(1270)[S]π

2−+1±ρ[P/F ]π

2−+0+f2(1270)[D]π 1.7782 0.24392 3.1200 18.036 −1756.3 −284.26

This notation uses the coupling constant gρπ = 6.03 and
the squared mass ratio b = (mρ/mπ)2 = 30.4367. The
energy-dependent self-energy Σρ of the ρ is given by

Im Σρ(x) =
g2

ρπ

48π
√

x
(x − 4)3/2θ(x − 4), (A.9)

where Im Σρ(x = b) = mρΓρ with Γρ = 150MeV, and

Re Σρ(x) =
g2

ρπ

24π2
x

[
4
b
− 4

x

−
(

1 − 4
x

)3/2

ln
(
0.5

(√
|x| +

√
|x − 4|

))

+
(

1 − 4
b

)3/2

ln
(
0.5

(√
b +

√
b − 4

))]
.

(A.10)

Terms like Σρ(s1,2) in eq. (A.8) refer to contributions
from real ρ, which decay into π+π− pairs so that s1,2 > 4,
and are complex-valued. In case of a virtual ρ, where the
ρ-exchange mediates the ππ-interaction, the self-energy
reads like Σρ(2−s+s1,2−t2,1), with 2−s+s1,2−t2,1 < 0,
and is purely real-valued.

Appendix A.4. Set of decay amplitudes

Table 4 shows the set of decay amplitudes used for the
PWA presented in this paper. The wave set includes es-
tablished amplitudes with M ε = 0+ attributed to diffrac-
tive dissociation. The amplitudes related to Primakoff pro-
duction are provided as isobaric M = 1 amplitudes or as

the ChPT amplitude. All Primakoff amplitudes are intro-
duced with both ε = ±1 which is necessary due to the
limited resolution as explained in sect. 2.2. Also included
in the fit are an amplitude describing the decay of beam
kaons into π−π−π+, and an incoherent background wave
that is homogeneous in phase space. Many amplitudes are
introduced with an upper or lower threshold which is cho-
sen in order to constrain them to the region where they
are expected to contribute.

Appendix A.5. Parameterisation of the decay
amplitudes for the PWA covering the mass region of
the π2(1670) in bins of t′

For the PWA fit covering the mass region around the
π2(1670), i.e. 1.50GeV/c2 < m3π < 1.80GeV/c2, in
small bins of t′ (see sect. 2.3), both mass dependences and
phases have to be taken into account. The resonances are
parameterised by Breit-Wigners functions, and the back-
ground by exponentials in m3π. As the background to
the amplitudes can stem from tails of higher-mass reso-
nances, it is added coherently with a mass-dependent rel-
ative phase. Breit-Wigner functions and background dis-
tributions are summed to single complex-valued terms, de-
noted in the following by Bj(m). Their parameters were
obtained by fitting the square of these Bj(m) to the re-
spective intensity of each amplitude. These terms are then
multiplied by the normalised decay amplitudes, i.e. in ev-
ery t′ bin the PWA uses the following decay amplitudes:

ψj(τ,m) =
ψj(τ)Bj(m)√∫
|ψj(τ)|dΦ(τ)

, (A.11)
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with

Bj(m) = p4,j

√
mjΓj

m2
j − m2 − imjΓj

+ p5,j exp(−αjm)

+ip6,j exp(−αjm). (A.12)

Here, mj is the nominal mass, Γj is the nominal width of
the resonance, αj describes the background, and p4,j , p5,j ,
and p6,j are adjusted to the relative strengths of Breit-
Wigner and background contributions. This background is
disregarded for the JPC = 2−+ amplitudes that contain
the π2(1670), as satisfactory fits were obtained without
this background, thus avoiding artificial phase shifts in
the resonance region. An exception is the 2−+0+f2[D]π
amplitude that seems rather to contain the higher-mass
π2(1880), which is not further discussed here. All used
parameters are derived from fits to intensities in small
mass bins, and given in table 5. The mass dependences
of all waves of minor strength, not included in table 5
but used in the PWA fit, are described by a polynomial
behaviour,

Bj(m) =√
0.19746 − 0.32710m + 0.18933m2 − 0.037275m3 ,

(A.13)

instead of using eq. (A.12).
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