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Abstract. Coupled dynamical systems that operate near the onset of a bifurcation can lead, under certain
conditions, to strong signal amplification effects. Over the past years we have studied this generic feature
on a wide range of systems, including: magnetic and electric fields sensors, gyroscopic devices, and arrays of
loops of superconducting quantum interference devices, also known as SQUIDs. In this work, we consider an
array of SQUID loops connected in series as a case study to derive asymptotic analytical approximations to
the exact solutions through perturbation analysis. Two approaches are considered. First, a straightforward
expansion in which the non-linear parameter related to the inductance of the DC SQUID is treated as
the small perturbation parameter. Second, a more accurate procedure that considers the SQUID phase
dynamics as non-uniform motion on a circle. This second procedure is readily extended to the series array
and it could serve as a mathematical framework to find approximate solutions to related complex systems
with high-dimensionality. To the best of our knowledge, an approximate analytical solutions to an array
of SQUIDs has not been reported yet in the literature.

1 Introduction

Superconductive materials have the unique property that
they lose all resistance to electric current when cooled be-
low a critical temperature [1–3]. When Heike Kamerlingh
Onnes and his team at a Leiden University laboratory
cooled mercury to 3 K in 1911 he discovered this phe-
nomenon. Fifty-one years after the discovery of supercon-
ductivity a thin layer of insulating material was placed
separating two superconductors, which was named a
Josephson junction. The Josephson junction takes advan-
tage of the phenomenon of quantum tunneling, which oc-
curs when electrons are able to pass through an insulating
material under an external magnetic field [4]. Then the di-
rect current (DC) superconducting quantum interference
device (SQUID) was invented in 1964 [5] soon after B.D.
Josephson postulated the Josephson effect. A SQUID con-
sists of a tiny loop (around 10 by 10 μm2) of superconduct-
ing material into which one incorporates Josephson junc-
tions. The DC SQUID has two Josephson junctions placed
in parallel and it combines the phenomena of flux quanti-
zation and Josephson tunneling. The flux contained in a
closed superconducting loop is quantized in units of the
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flux quantum, which has been predicted theoretically [6]
and observed experimentally [7,8]. The flux quantum is
Φ0 ≡ h

2e ≈ 2.07× 10−15, where h is Planck’s constant and
2e is the charge on the Cooper pair.

The Direct Current (DC) SQUID is one of the
most sensitive magnetic field devices and it is used in
the medical field in areas such as magnetic resonance
imaging (MRI), magnetoencephalography (measurements
of neural activity inside a brain), magnetogastrogra-
phy (stomach imaging), and magnetocardiography (heart
imaging) [9–17]. In the past 100 years, MRI, used in the
medical field to take images of the interior of the human
body, has been the main application of superconductiv-
ity which has found widespread success. In recent years,
arrays of coupled DC SQUIDs have been considered as
a general mechanism for improving signal detection and
amplification [18–21]. The arrays can yield comparable im-
provements in signal output, relative to background noise,
over those of a single device [18,22,23].

In an array configuration of SQUIDS each loop con-
tains two Josephson junctions, i.e., a standard DC SQUID.
Using non-uniformly distributed SQUIDs loop areas in the
array exhibits a magnetic field dependent average volt-
age response 〈V (xe)〉, where xe denotes an external mag-
netic field normalized by the quantum flux, which has
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a pronounced single peak with a large voltage swing at
zero external magnetic field, i.e, xe = 0. The potential
high dynamic range and linearity of the anti-peak voltage
response render the array an ideal detector of absolute
strength of external magnetic fields, so these arrays are
also commonly known as Superconducting Quantum In-
terference Filters (SQIFs). Since the first time it was
theoretically proposed [24,25] and experimentally demon-
strated [26–28], the SQIF concept has been investigated
and exploited by a continuously growing number of groups
with respect to its basic properties [29–31] and its suit-
ability in various fields of application, like magnetome-
try [32–37] and rf electronics [38–45].

Improving the linearity of the average voltage response
is critical for developing advanced technologies, including:
low noise amplifier (LNA), which can increase link mar-
gins and affect an entire communication system [46–51];
Unmanned Aerial Vehicles (UAVs), where size, weight and
power are limited; electrically small antennas, which can
provide acceptable gain [40,45,52–54]; and land mine de-
tection [55]. A standard approach to improve linearity and
dynamic range of a SQIF device employes electronic feed-
back. This approach, unfortunately, tends to limit the fre-
quency response of the system [56]. In order to obtain large
signal frequency response, feedback cannot be used and,
therefore, series arrays of identical DC SQUIDs have also
been studied [57], however, the single anti-peak response
is more desirable.

An iterative method in which a small parameter is used
to create an asymptotic expansion for the solution of a sys-
tem of equations is known as a perturbation analysis. A
perturbation analysis is important because it can provide
an approximate analytical solution for a system, which is
not directly solvable. In turn, this approximate analyti-
cal solution can be used to conduct computer simulations
in a more timely fashion. While attempts of a perturba-
tion analysis of the dynamics of a single DC SQUID have
been performed previously [58,59], a full analytical solu-
tion to the average voltage response of an array of DC
SQUIDs had not been successfully completed. In this pa-
per, we perform a perturbation analysis on the single DC
SQUID phase equations in two different ways. First, we
seek a straight forward expansion using the non-linear pa-
rameter related to the inductance, β, of the DC SQUID
as the perturbation parameter [58,60–62]. Second, we em-
ploy a procedure that preprocesses the differential equa-
tions into a system that represents non-uniform motion on
a circle [59,62–67]. This second procedure is much more
complex but it is also much more accurate. Then we ex-
tend the second approach to find approximate analytical
solutions to the series coupled array of SQUIDs.

2 Background

A single DC SQUID has two Josephson junctions arranged
in parallel, connected with superconducting material, see
Figure 1. In order to model the dynamics of this system
there are some assumptions that need to be considered.

Magnetic Field

Superconducting
Material

Josephson Junction

Biasing
Current

Biasing
Current

Fig. 1. Schematic diagram of a single DC SQUID with the
magnetic field shown (top) and the currents listed (bottom).

One assumption is that the Josephson junctions are sym-
metric. The voltage measured across the two Josephson
junctions is usually the state “output”, however, it is the
circulating current Is, experimentally equivalent to the
“shielding flux”, which is used as the output variable of
interest.

In the presence of an external magnetic flux Φe, one
obtains a loop flux consisting of the (geometrical) com-
ponent Φe together with a contribution arising from the
induced circulating or shielding current Is that tends to
screen the applied flux

Φ = Φe + LIs, (1)

where L is the loop inductance. For a Josephson junction
that is over-damped the wave-function is single-valued
around the SQUID loop, leading to the phase continuity
condition

ϕ2 − ϕ1 = 2πn − 2π
Φ

Φ0
, (2)

where ϕ1 and ϕ2 are the phases across each of the
Josephson junctions, Φ0 ≡ h

2e is the flux quantum and
n is an integer representing the eigenstate of the flux in
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the SQUID. n can be set to zero since the flux contained
in a closed superconducting loop is quantized in units of
the flux quantum, and combine equations (1) and (2) to
find

β
Is

I0
= ϕ1 − ϕ2 − 2π

Φe

Φ0
, (3)

where β = 2π LI0
Φ0

is the nonlinear parameter, and I0 is the
critical current of the Josephson junctions. To simplify the
equations slightly from here on 2π Φe

Φ0
will be written as ϕe.

Using a resistively shunted junction (RSJ) model of
the Josephson junction to reduce hysteresis in the output
with a lumped circuit representation [68], the currents in
the two arms of the SQUID can be modeled. This method
uses the Josephson relations, dϕi

dt = 2e
�

Vi for i = 1, 2,
which link the voltage and the quantum phase difference
across the junction i, with Planck’s constant �, the voltage
in the ith junction Vi, and the charge of an electron e. The
resulting model is:

1
ω

dϕ1

dt
=

Ib

2
− Is − I0 sin ϕ1

1
ω

dϕ2

dt
=

Ib

2
+ Is − I0 sin ϕ2, (4)

where ω ≡ 2eRN

�
is the SQUID time constant, and Ib is the

bias current. The parameter RN in ω is the normal state
resistance of the Josephson junctions. In experiments [69]
the DC bias current and flux are externally controllable.
Dividing equation (4) by I0 results in

1
ωc

dϕ1

dt
= J − Is

I0
− sinϕ1

1
ωc

dϕ2

dt
= J +

Is

I0
− sinϕ2,

where ωc = ωI0 is a rescaling of the time constant, and
J = Ib

2I0
is a dimensionless quantity known as the normal-

ized bias flux. For the computational modeling, both the
parameters ωc and I0 are set to one. The final form of the
model is obtained by substituting Is

I0
from equation (3) to

yield, after some simplification, the following expressions
for the phase dynamics

ϕ̇1 = J − 1
β

(ϕ1 − ϕ2 − ϕe) − sin ϕ1

ϕ̇2 = J +
1
β

(ϕ1 − ϕ2 − ϕe) − sin ϕ2, (5)

where the dots denote the time differentiation with nor-
malized time τ = ωct = 2eI0RN

�
t of the phases across the

Josephson junctions ϕ1 and ϕ2. The variable ϕe = 2παxe,
where xe is the normalized external magnetic flux, and α
is related to the size of the SQUID. We use the approxi-
mate assumption that α = β.

The output of the DC SQUID we want to reproduce
analytically through the perturbation analysis is the av-
erage voltage response. The average voltage, 〈V 〉, of a
SQUID at a point in xe is the mean value of the voltage
over time. Between 101 and 501 points in xe are calculated

Fig. 2. Average voltage output of a DC SQUID for J values
between 0.1 and 1.9 for β = 1.0 and xe between −2 and 2.

depending on how detailed the image needs to be and the
range of xe. An example of the average voltage response
of a single SQUID over a range of values of J is shown in
Figure 2. The average voltage response was divided by J
so that all the plots are on the same scale and are com-
parable. When J < 1 there are numerous values of xe for
which 〈V 〉 is zero. As J becomes larger and larger beyond
one the voltage swing of the average voltage response de-
creases drastically. An ideal average voltage response has a
large voltage swing and no values for which 〈V 〉 = 0. This
is the reason a number close to one, but slightly larger, is
chosen for the value of J .

3 Single DC SQUID perturbation analysis

The perturbation analysis of the single DC SQUID begins
with the phase equations in equation (5). We will inves-
tigate two approaches to find an analytical solution. The
first of which is the straightforward expansion using β as
the perturbation parameter.

3.1 Straightforward expansion

Equation (5) is reorganized using the sum and difference
formulas, Σ = ϕ1+ϕ2

2 and δ = ϕ1−ϕ2
2 , respectively, to

become

dΣ

dτ
= J − sinΣ cos δ

dδ

dτ
= − 2

β
δ +

2
β

παxe − sin δ cosΣ. (6)

If a time shift ν = 2
β τ is defined such that dδ

dτ = dδ
dν

dν
dτ =

2
β

dδ
dν then the fast and slow time scales in the system of

equations in equation (6) are given by 2τ
β and τ , respec-

tively. Σ and δ are expanded in terms of the parameter β
in τ and ν as follows:

Σ(β, τ) ≈ Σ0(τ) + βΣ1(τ) + . . .

δ(β, ν) ≈ δ0(ν) + βδ1(ν) + . . . (7)
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Substituting the expansions in equation (7) into equa-
tion (6) and multiplying the second equation by β

2 yields

dΣ0(τ)
dτ

+ β
dΣ1(τ)

dτ
+ . . . = J − cos(δ0(ν) + βδ1(ν) + . . .)

× sin (Σ0(τ) + βΣ1(τ) + . . .)
dδ0(ν)

dν
+ β

dδ1(ν)
dν

+ . . . =−δ0(ν) − βδ1(ν) − . . . + παxe

−β

2
sin (δ0(ν) + βδ1(ν) + . . .)

×cos (Σ0(τ)+ βΣ1(τ) + . . .) .

Using Taylor expansions for cosine and sine and grouping
like orders of β, the equations become

dΣ0(τ)
dτ

+β
dΣ1(τ)

dτ
= J + sin Σ0(τ) sin δ0(ν)βδ1(ν)

− cosΣ0(τ)βΣ1(τ) cos δ0(ν)

− sin Σ0(τ) cos δ0(ν) + O(β2)
dδ0(ν)

dν
+ β

dδ1(ν)
dν

= − δ0(ν) − βδ1(ν) + παxe

− β

2
sin δ0(ν)cos Σ0(τ)+O(β2).

(8)

Collecting the coefficients of like powers of β from
equation (8) gives the O(β0) equations

dΣ0(τ)
dτ

= J − sin Σ0(τ) cos δ0(ν)

dδ0(ν)
dν

= −δ0(ν) + παxe,

and the O(β1) equations become

dΣ1(τ)
dτ

= sin Σ0(τ) sin δ0(ν)δ1(ν)

− cosΣ0(τ) cos δ0(ν)Σ1(τ)
dδ1(ν)

dν
= −δ1(ν) − 1

2
sin δ0(ν) cosΣ0(τ).

Perturbation solution

The details of the straightforward perturbation analysis
are contained in Appendix A. The asymptotic expansion
for approximating the dynamics for a single DC SQUID
can be summarized as follows

Σ(β, τ) ≈ Σ0(τ) + βΣ1(τ) + . . .

δ(β, ν) ≈ δ0(ν) + βδ1(ν) + . . . ,

where each of the components are

δ0(ν) = παxe

Σ0(τ) = 2 arctan
(
a +

√
A tan (Γ )

)

δ1(ν) = −1
2

sin δ0(ν) cos
(

Σ0

(
β

2
ν

))

Σ1(τ) =
8π sin(πxe)2

(
tan(Γ ) + a

√
A − a3

√
A
)

γa4A(1 + a2 + 2a
√

A tan(Γ ) + A tan(Γ )2)

+
8π sin(πxe)2

(−2 arctan(Γ )a + a4 tan(Γ )
)

γa4A(1 + a2 + 2a
√

A tan(Γ ) + A tan(Γ )2)

− π sin(πxe)2 ln(1 + a2 + 2a
√

A tan(Γ )
γa2

√
A

− −a2 tan(Γ )2 + tan(Γ )2)A
γa2

√
A

+
π sin(πxe)2

√
A ln(1 + tan(Γ )2)
γa2

+ C0, (9)

where

C0 =
∫

e
∫ −p(τ)dτ

(∫
e
∫

p(τ)dτq(τ)dτ

∣∣∣∣
τ=0

)

Γ = γτ + arctan(ξ0)

a =
cos δ0(ν)

J

A = 1 − a2

γ =
1
2

√
J2 − cos2 δ0(ν)

ξ0 =
tan

(
1
2Σ0(0)

)− a√
1 − a2

ν =
2
β

τ.

The solutions for small values of β found from equation (9)
fit very well with the solutions obtained from solving the
system of differential equations in equation (5) with the
Matlab Runge-Kutta numerical solver ode45. An exam-
ple where β = 0.1 is shown in Figure 3. On the top
the results from the average phase Σ(τ) are shown and
on the bottom the plot for the phase difference δ(ν) is
depicted. Both comparison plots show very good agree-
ment with the simulated results. The RMS (Root-Mean-
Square) error between the simulated and numerical solu-
tions for Σ(τ) is 4.34772×10−4. This error measurement is



Page 5 of 20

Fig. 3. Results of perturbation analysis of a single DC SQUID
for small β values, here β = 0.1, xe = 0.25, α = 0.1, J = 1.001,
Σ(0) = π

2
. The top plot is Σ(τ ) and the bottom plot is δ(ν).

calculated as:

RMS =
1
N

√√√√ N∑
k=1

(〈V 〉s(k) − 〈V 〉a(k))2,

for which 〈V 〉s is the simulated average voltage, 〈V 〉a is the
analytical approximation obtained through the perturba-
tion analysis, and N is the number points in xe. The error
between the numerical solution and the simulated solution
for δ(ν) is 4.09142× 10−6.

Once β is increased to the range 0.5 to 1.5 issues with
the accuracy of the approximate analytical solutions be-
come more visible. Figure 4 shows the simulated and nu-
merical solutions for β = 0.5. There appears to be a very
good agreement between the numerical solution from the
perturbation analysis and the simulated results from the
code for this value of β. The RMS error between the simu-
lated and numerical solutions for Σ(τ) is 4.28130×10−3, a
full order of magnitude larger than the case where β = 0.1.
For δ(ν) it is 1.32602×10−4, two full orders of magnitude
larger than the case where β = 0.1.

In Figure 5, the solutions for Σ(τ) and δ(ν) with pa-
rameters β = 1.0, xe = 0.25, α = 0.1, J = 1.001,
Σ(0) = π

2 are shown, where top plot is Σ(τ) and the
bottom plot is δ(ν). For most of the array distributions
we are interested in β = 1.0 is the midpoint value. The
simulated and numerical solutions for this value of β no

Fig. 4. Results of perturbation analysis of a single DC SQUID
for β = 0.5, xe = 0.25, α = 0.5, J = 1.001, Σ(0) = π

2
. The top

plot is Σ(τ ) and the bottom plot is δ(ν).

longer match. The RMS error between the simulated and
numerical solutions for Σ(τ) is 0.0101019 and for δ(ν) it
is 0.001401005. Both of these error measurements are full
orders of magnitude larger than when β = 0.5. Notice that
when β increases the shift in time ν = 2

β τ is no longer slow
time scale so that the adiabatic simplification of δ0(ν) and
δ1(ν) no longer holds, thus the approximation degrades.

The difference between the numerical solutions and the
simulated solutions when β = 1.5 are much greater than
for smaller values of β, see Figure 6. Neither the solution
of Σ(τ) nor that of δ(ν) line up with the simulations. The
RMS error between the simulated and numerical solutions
for Σ is 0.0112579, larger than it was previously. For δ it
is 0.00280592, which is double the error value than in the
case when β = 1.0. It can be concluded that this form of
perturbation analysis is not ideal for numerically estimat-
ing the average voltage response of the SQUID arrays.

The average voltage response 〈V 〉 is calculated by av-
eraging the quantity V (τ) = ϕ̇1+ϕ̇2

2 = Σ̇ over a range
of xe values. Figure 7 shows the comparison of the sim-
ulated and numerical results for the average voltage re-
sponse with β = 1.0, α = 0.1, J = 1.001, Σ(0) = π

2 and
xe = [−2, 2]. The simulations took 197.49 s to calculate
the average voltage response and the analytical solution
took 15.07 s. The speedup achieved by using the analytical
solution over the integrations is 13.10, which is significant.
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Fig. 5. Results of perturbation analysis of a single DC SQUID
for β = 1.0, xe = 0.25, α = 1.0, J = 1.001, Σ(0) = π

2
. The top

plot is Σ(τ ) and the bottom plot is δ(ν).

The numerical results approximated by the perturbation
analysis overestimate the simulated results at almost ev-
ery point in xe and result in an RMS error of 0.00388943.

It can be concluded that the numerical solutions re-
sulting from the straightforward asymptotic expansion,
which uses β as the perturbation parameter, are not very
accurate for the range of parameters within the context
of arrays of SQUIDs. An alternate way to approximate
the analytical solution is needed in order to extend the
analysis to coupled arrays and get more accurate results.

3.2 Hybrid approach: non-uniform oscillators

The second approach that we explore in this work is a
perturbation analysis around the parameter ε = (a − a0)
that results from manipulation of the phase equations.
This method should be more accurate over the range of
β values used in the computational analysis. Finding an
approximate solution to the single SQUID phase equations
begins by applying the transformations Σ = ϕ1+ϕ2

2 and

Fig. 6. Results of perturbation analysis of a single DC SQUID
for β = 1.5, xe = 0.25, α = 1.5, J = 1.001, Σ(0) = π

2
. The top

plot is Σ(τ ) and the bottom plot is δ(ν).

Fig. 7. Average voltage response comparison of simulated and
numerical results of a single DC SQUID for β = 1.0, α = 1.0,
J = 1.001, Σ(0) = π

2
and xe = [−2, 2].

δ = ϕ1 − ϕ2 − 2παxe to equation (5), which yields

Σ̇ = J − sin Σ cos
(

δ + 2παxe

2

)

δ̇ = − 2
β

δ − 2 cosΣ sin
(

δ + 2παxe

2

)
.

Letting θ = Σ − π
2 and recalling that sin(A + π

2 ) = cosA
and cos(A + π

2 ) = − sinA, the following expressions are
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arrived at

θ̇ = J − cos θ cos
(

δ + 2παxe

2

)

δ̇ = − 2
β

δ + 2 sin θ sin
(

δ + 2παxe

2

)
.

The goal is to write the first equation in the form of non-
uniform motion on a circle. If τ̄ = Jτ , then dθ

dτ = dθ
dτ̄

dτ̄
dτ =

J dθ
dτ̄ and by reorganizing the equations become

θ′ = 1 + a cos θ

δ̇ = − 2
β

δ + 2 sin θ sin
(

δ + 2παxe

2

)
, (10)

where a = − 1
J cos( δ+2παxe

2 ) and θ′ = dθ
dτ̄ . Rewriting θ′ as:

θ′ = 1 + a0 cos θ + (a − a0) cos θ,

where a0 = − 1
J cos( 〈δ〉+2παxe

2 ) in which 〈δ〉 =
1
T

∫ T

0 δ(τ)dτ for which T is the period of oscillations in δ.
Setting (a − a0) = ε results in

θ′ = 1 + a0 cos θ + ε cos θ. (11)

An approximate solution to θ and δ are sought in the form

θ(τ) = θ0(τ) + εθ1(τ) + . . .

δ(τ) = δ0(τ) + εδ1(τ) + . . . (12)

Substituting equation (12) into equation (11) and the sec-
ond equation in equation (10), and expanding up to O(ε0)
gives

θ′0 = 1 + a0 cos θ0

δ̇0 = − 2
β

δ0 + 2 sin θ0 sin
(

δ0 + 2παxe

2

)
. (13)

Perturbation solution

Appendix B contains the details of the perturbation anal-
ysis that solves equation (13). The asymptotic expansion
for approximating the dynamics for a single DC SQUID
determined from the hybrid approach can be summarized
as follows:

Σ(ε, τ) ≈ π

2
+ 2 tan−1

[
b−1 tan

(
φ(τ)

2

)]

δ(ε, τ) ≈ K
c sin(φ(τ)) − cosφ(τ)

1 − a0 cosφ(τ)
,

Fig. 8. The results of the perturbation analysis of a single DC
SQUID for Σ(τ ) (top) and δ(τ ) (bottom) compared with the
simulated results where β = 0.1, xe = 0.25, α = 0.1, J = 1.001,
Σ(0) = π

2
.

where

b =
√

1 − a0

1 + a0

a0 = − 1
J

cos
( 〈δ〉 + 2παxe

2

)

c =
2

βω0

K =
2 sin(παxe)
J (1 + c2)

φ(τ) = (ω0 + Δω)τ

ω0 = J
√

1 − a2
0

Δω =
sin(παxe)K

2

√
1 − a2

0 − 1
a2
0

+
cos(παxe)K2

16
(a2

0 − 2 − c2(3a2
0 − 2))

√
1 − a2

0

a3
0(1 − a2

0)

− cos(παxe)K2

16
c2(2a4

0 − 4a2
0 + 2) + 2 − 2a2

0

a3
0(1 − a2

0)
.

To study how well the analytical solution from the hybrid
perturbation analysis fits the simulated solutions Σ(τ)
and δ0(τ) are plotted together. In particular, Figure 8
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Fig. 9. The results of the perturbation analysis of a single DC
SQUID for Σ(τ ) (top) and δ(τ ) (bottom) compared with the
simulated results where β = 1.5, xe = 0.25, α = 1.5, J = 1.001,
Σ(0) = π

2
.

shows the results for β = 0.1. As in the case of the straight-
forward approach, the numerical and simulated solution
are almost identical. The RMS error between the sim-
ulated and numerical solutions for Σ is 2.24046 × 10−4

while for δ(τ) it is 3.96683 × 10−6. Both error values are
of the same magnitude as those of the straightforward ex-
pansion.

Figure 9 shows a similar comparison for β = 1.5. The
approximated solution for Σ(τ) slightly over shoots the
simulated solution, but this solution is far more accurate
than the one in the straightforward approach, recall Fig-
ure 6. The RMS error between the simulated and numer-
ical solutions for Σ(τ) is 0.0044326 while for δ(τ) it is
0.0015072. The error for Σ(τ) is an order of magnitude
less and the error for δ(τ) is half the magnitude when
compared with the solutions from the straightforward ex-
pansion. Since the perturbation analysis does not employ
β as the small parameter, the issue of the solution not
being accurate for large values of β is no longer a prob-
lem. Furthermore, since the relevant values of β are in the
range [0.5 : 1.5], the hybrid approach perturbation anal-
ysis can be deemed to be superior to the straightforward
approach.

In Figure 10 the average voltage response of a single
SQUID is calculated with β = 1.0, α = 0.1, J = 1.001,
Σ(0) = π

2 and xe = [−2, 2]. The simulations took 197.49 s
to calculate the average voltage response and the ana-

Fig. 10. The average voltage response of a single DC SQUID
calculated from the perturbation analysis compared with the
simulated results for β = 1.0 with xe = [−2, 2], α = 1.0, J =
1.001, Σ(0) = π

2
.

Fig. 11. Circuit representation of a series coupled SQUID ar-
ray, where (ib, i1,k, i2,k, i3,k, i4,k) represent the normalized
currents, (ϕ1,k, ϕ2,k) are the phases across the Josephson junc-
tions, and (βk/2) are the parameters related to the inductance
values.

lytical solution took only 1.77 s. The speedup achieved
by using the analytical solution over the integrations is
111.58, which is even greater than for the straightforward
approach. Also, here the perturbation solution overesti-
mates the simulated results slightly but to a much less ex-
tent that the results from the straightforward expansion
(recall Fig. 7). There is an RMS error between the numer-
ical and simulated values for the average voltage response
of 0.0010147. This is a quarter of the error when compared
with the average voltage response of the straightforward
approach.

4 Arrays of DC SQUIDs coupled in series

We now extend perturbation analysis to arrays of SQUIDs
coupled in series. This type of array consists of individual
DC SQUIDs, which are connected to each other without
sharing junctions or sides, see Figure 11. The bias current
is fed to each of the SQUIDs in the array, and the output
is measured at each of the Josephson junctions with the
control lines. Each SQUID has a different area designated
by the different loop sizes. The circuit representation of N
SQUIDs coupled in series can be seen in Figure 11. In the
circuit (ib, i1,k, i2,k, i3,k, i4,k) represent the normalized
currents, (ϕ1,k, ϕ2,k) are the phases across the Josephson
junctions, βk/2 are the parameters related to the induc-
tance values, with k = 1, . . . , N , and xe are the points in
the array where the contributions from external fields are
included.
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4.1 Phase equations

The phase equations are derived in a similar fashion to
the single DC SQUID, with the additional term included
for the nearest neighbor coupling with strength M :

ϕ̇1,1 = J − sin ϕ1,1 − 1
β1

(
ϕ1,1 − ϕ2,1 − ϕe,1

− M

β2
(ϕ1,2 − ϕ2,2 − ϕe,2)

)

ϕ̇2,1 = J − sin ϕ2,1 +
1
β1

(
ϕ1,1 − ϕ2,1 − ϕe,1

− M

β2
(ϕ1,2 − ϕ2,2 − ϕe,2)

)

ϕ̇1,k = J − sin ϕ1,k − 1
βk

(
ϕ1,k − ϕ2,k − ϕe,k

− M

βk+1
(ϕ1,k+1 − ϕ2,k+1 − ϕe,k+1)

− M

βk−1
(ϕ1,k−1 − ϕ2,k−1 − ϕe,k−1)

)

ϕ̇2,k = J − sin ϕ2,k +
1
βk

(
ϕ1,k − ϕ2,k − ϕe,k

− M

βk+1
(ϕ1,k+1 − ϕ2,k+1 − ϕe,k+1)

− M

βk−1
(ϕ1,k−1 − ϕ2,k−1 − ϕe,k−1)

)

ϕ̇1,N = J − sin ϕ1,N − 1
βN

(
ϕ1,N − ϕ2,N − ϕe,N

− M

βN−1
(ϕ1,N−1 − ϕ2,N−1 − ϕe,N−1)

)

ϕ̇2,N = J − sin ϕ2,N +
1

βN

(
ϕ1,N − ϕ2,N − ϕe,N

− M

βN−1
(ϕ1,N−1 − ϕ2,N−1 − ϕe,N−1)

)
, (14)

where k = 2, . . . , N−1 and N is the number of SQUIDs in
the array. Notice that this system contains 2N equations
for an array with N SQUIDs.

4.2 Asymptotic solution without coupling

First, the average voltage response is numerically esti-
mated for series coupled SQUID array without coupling
(M = 0). The equations for the series coupled SQUIDs,

where M = 0, can be written as

ϕ̇1,k = J − 1
βk

(ϕ1,k − ϕ2,k − 2πxeβk) − sin ϕ1,k

ϕ̇2,k = J +
1
βk

(ϕ1,k − ϕ2,k − 2πxeβk) − sin ϕ2,k, (15)

for k = 1, . . . , N . Let Σk = ϕ1,k+ϕ2,k

2 = θk + π
2 and δk =

ϕ1,k − ϕ2,k − 2παkxe.
Recalling that sin(A + π

2 ) = cosA and cos(A + π
2 ) =

− sinA, gives

θ̇k = J − cos θk cos
(

δk + 2παkxe

2

)

δ̇k = − 2
βk

δk + 2 sin θk sin
(

δk + 2παkxe

2

)
.

These are exactly the same equations solved in the sin-
gle SQUID case but now there are N of them. Thus,
the asymptotic expansion for approximating Σk,0(τ) and
δk,0(τ) through the hybrid approach is:

Σk,0(τ) = θk,0(τ) +
π

2

= 2 tan−1

[
b−1
k tan

(
φk,0(τ)

2

)]
+

π

2

δk,0(τ) = Kk
ck sin(φk,0(τ)) − cosφk,0(τ)

1 − ak,0 cosφk,0(τ)
, (16)

where

bk =

√
1 − ak,0

1 + ak,0
,

ak,0 = − 1
J

cos
( 〈δk〉 + 2παkxe

2

)

ck =
2

βkωk,0

Kk =
2 sin(παkxe)
J (1 + c2

k)

φk,0(τ) = (ωk,0 + Δωk)τ

ωk,0 = J
√

1 − a2
k,0

Δωk =
sin(παkxe)k

2

√
1 − a2

k,0 − 1

a2
k,0

+
cos(παkxe)K2

k

16

×
(

(a2
k,0 − 2 − c2

k(3a2
k,0 − 2))

√
1 − a2

k,0

a3
k,0(1 − a2

k,0)

− c2
k(2a4

k,0 − 4a2
k,0 + 2) + 2 − 2a2

k,0

a3
k,0(1 − a2

k,0)

)
.

A comparison of the average voltage responses from sim-
ulating equation (15) and the analytical approximation
in equation (16) is shown in Figure 12. The array has
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Fig. 12. Average voltage responses of the perturbation solu-
tion and the simulated solution of an array of 25 SQUIDs with
a Gaussian distribution of β values between 0.5 and 1.5 with
J = 1.001, M = 0.0 and xe = [−2, 2].

25 SQUIDs with a Gaussian distribution of β values in
[0.5 : 1.5]. The simulations took 602.50 s to calculate the
average voltage response and the analytical solution took
44.91 s, which is a speedup of 13.42. Visually the differ-
ences between the simulated and asymptotic solutions are
minor. Calculation of the RMS error 0.013468 confirms
this statement, since it is less than 25 times the error of
the average voltage response of a single SQUID of size 1.0.

4.3 Asymptotic solution for nearest neighbor mutual
inductance coupling

To get a more accurate asymptotic solution to the array
of SQUIDs coupled in series the nearest neighbor mutual
inductance coupling needs to be considered. A special case
of equation (14) where N = 3 is chosen in order to get in-
sight into the complexity of the analysis, while keeping the
number of terms more tractable for the complex pertur-
bation mathematics. Recall that Σk = ϕ1,k+ϕ2,k

2 = θk + π
2

and δk = ϕ1,k − ϕ2,k − 2παkxe for k = 1, 2, 3. Time
shift τ̄ = Jτ , where dθk,0

dτ = Jθ′k,0, is performed on the
θ equations to yield

θ′1 = 1 − 1
J

cos θ1 cos
(

δ1 + 2πα1xe

2

)

δ̇1 = − 2
β1

δ1 +
2M

β1β2
δ2 + 2 sin θ1 sin

(
δ1 + 2πα1xe

2

)

θ′2 = 1 − 1
J

cos θ2 cos
(

δ2 + 2πα2xe

2

)

δ̇2 = − 2
β2

δ2 +
2M

β2β3
δ3 +

2M

β1β2
δ1

+ 2 sin θ2 sin
(

δ2 + 2πα2xe

2

)

θ′3 = 1 − 1
J

cos θ3 cos
(

δ3 + 2πα3xe

2

)

δ̇3 = − 2
β3

δ3 +
2M

β2β3
δ2 + 2 sin θ3 sin

(
δ3 + 2πα3xe

2

)
.

(17)

An approximate solution to θk and δk are sought in the
form:

θk = θk,0 + Mθk,1 + . . .

δk = δk,0 + Mδk,1 + . . . , (18)

where M is the nearest neighbor mutual inductance cou-
pling parameter. Substituting the asymptotic expansions
in equation (18) into equation (17) and reorganizing the
terms up to order O(M2) yields

θ′1,0 + Mθ′1,1 = 1 − 1
J

cos(θ1,0 + Mθ1,1)

× cos
(

δ1,0

2
+ πα1xe +

Mδ1,1

2

)
+ O(M2)

δ̇1,0 + Mδ̇1,1 = − 2
β1

δ1,0 − 2M

β1
δ1,1 +

2M

β1β2
δ2,0 + O(M2)

+ 2 sin(θ1,0 + Mθ1,1)

× sin
(

δ1,0

2
+ πα1xe +

Mδ1,1

2

)

θ′2,0 + Mθ′2,1 = 1 − 1
J

cos(θ2,0 + Mθ2,1)

× cos
(

δ2,0

2
+ πα2xe +

Mδ2,1

2

)
+ O(M2)

δ̇2,0 + Mδ̇2,1 = − 2
β2

δ2,0 − 2M

β2
δ2,1 +

2M

β2β3
δ3,0

+
2M

β1β2
δ1,0 + 2 sin(θ2,0 + Mθ2,1)

× sin
(

δ2,0

2
+ πα2xe +

Mδ2,1

2

)
+ O(M2)

θ′3,0 + Mθ′3,1 = 1 − 1
J

cos(θ3,0 + Mθ3,1)

× cos
(

δ3,0

2
+ πα3xe +

Mδ3,1

2

)
+ O(M2)

δ̇3,0 + Mδ̇3,1 = − 2
β3

δ3,0 − 2M

β3
δ3,1 +

2M

β2β3
δ2,0 + O(M2)

+ 2 sin(θ3,0 + Mθ3,1)

× sin
(

δ3,0

2
+ πα3xe +

Mδ3,1

2

)
. (19)

Using Taylor expansions for cosine and sine and group-
ing like orders of β, then collecting the coefficients of like
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powers of M gives the O(M0) equations

θ′1,0 = 1 − 1
J

cos θ1,0 cos
(

δ1,0

2
+ πα1xe

)

δ̇1,0 = − 2
β1

δ1,0 + 2 sin θ1,0 sin
(

δ1,0

2
+ πα1xe

)

θ′2,0 = 1 − 1
J

cos θ2,0 cos
(

δ2,0

2
+ πα2xe

)

δ̇2,0 = − 2
β2

δ2,0 + 2 sin θ2,0 sin
(

δ2,0

2
+ πα2xe

)

θ′3,0 = 1 − 1
J

cos θ3,0 cos
(

δ3,0

2
+ πα3xe

)

δ̇3,0 = − 2
β3

δ3,0 + 2 sin θ3,0 sin
(

δ3,0

2
+ πα3xe

)
,

and the O(M1) equations

θ′1,1 =
1
2J

cos θ1,0 sin
(

δ1,0

2
+ πα1xe

)
δ1,1

+
1
J

sin θ1,0 cos
(

δ1,0

2
+ πα1xe

)
θ1,1

δ̇1,1 = − 2
β1

δ1,1 +
2

β1β2
δ2,0

+ sin θ1,0 cos
(

δ1,0

2
+ πα1xe

)
δ1,1

+ 2 cos θ1,0 sin
(

δ1,0

2
+ πα1xe

)
θ1,1

θ′2,1 =
1
2J

cos θ2,0 sin
(

δ2,0

2
+ πα2xe

)
δ2,1

+
1
J

sin θ2,0 cos
(

δ2,0

2
+ πα2xe

)
θ2,1

δ̇2,1 = − 2
β2

δ2,1 +
2

β2β3
δ3,0 +

2
β1β2

δ1,0

+ sin θ2,0 cos
(

δ2,0

2
+ πα2xe

)
δ2,1

+ 2 cos θ2,0 sin
(

δ2,0

2
+ πα2xe

)
θ2,1

θ′3,1 =
1
2J

cos θ3,0 sin
(

δ3,0

2
+ πα3xe

)
δ3,1

+
1
J

sin θ3,0 cos
(

δ3,0

2
+ πα3xe

)
θ3,1

δ̇3,1 = − 2
β3

δ3,1 +
2

β2β3
δ2,0

+ sin θ3,0 cos
(

δ3,0

2
+ πα3xe

)
δ3,1

+ 2 cos θ3,0 sin
(

δ3,0

2
+ πα3xe

)
θ3,1.

Perturbation solution

The O(M0) case is the series coupled SQUID arrays with
no coupling term, which can be found in Section 4.2.

The solution to this case is

θk,0 = θk,0,0 + . . .

δk,0 = δk,0,0 + . . .

where

θk,0,0(τ) = 2 tan−1

[
b−1
k,0 tan

(
φk,0,0(τ)

2

)]

δk,0,0(τ) = Kk,0
ck,0 sinφk,0,0(τ) − cosφk,0,0(τ)

1 − ak,0,0 cosφk,0,0(τ)
, (20)

for k = 1, 2, 3 with

bk,0 =

√
1 − ak,0,0

1 + ak,0,0

ak,0,0 = − 1
J

cos
(

< δk,0 > +2παkxe

2

)

ck,0 =
2

βkωk,0

Kk,0 =
2 sin(παkxe)

J
(
1 + c2

k,0

)
φk,0,0(τ) = (ωk,0,0 + Δωk,0)τ

ωk,0,0 = J
√

1 − a2
k,0,0

Δωk,0 =
sin(παkxe)k

2

√
1 − a2

k,0,0 − 1

a2
k,0,0

+
cos(παkxe)K2

k,0

16

×
(

(a2
k,0,0 − 2 − c2

k,0(3a2
k,0,0 − 2))

√
1 − a2

k,0,0

a3
k,0,0(1 − a2

k,0,0)

−c2
k,0(2a4

k,0,0 − 4a2
k,0,0 + 2) + 2 − 2a2

k,0,0

a3
k,0,0(1 − a2

k,0,0)

)
.

Using the approximate solutions for θk,1(τ) and δk,1(τ)
with the ten most dominant modes detailed in Ap-
pendix C, as well as θk,0(τ) and δk,0(τ) in equation (20),
the final form for the system of equations can be written
as:

Σk(τ) =
π

2
+ θk,0(τ) + Mθk,1(τ)

δk(τ) = δk,0(τ) + Mδk,1(τ), (21)

for k = 1, 2, 3. The solutions for Σk(τ) and δk(τ) for three
SQUIDs with M = 0.001 are shown in Figure 13. The solid
lines are simulations and the dashed lines are analytical
solutions. The top plot is Σk(τ) and the bottom plot is
δk(τ), bright green is k = 1, red is k = 2 and blue is
k = 3. The analytical solution is a decent approximation
to the simulated results for small M with the green curves
representing the solutions for the smallest value of β being
the best approximations.

Figure 14 shows solutions for Σk(τ) and δk(τ) for three
SQUIDs with M = 0.1. The largest value for M that
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Fig. 13. Σk(τ ) (top) and δk(τ ) (bottom) for k = 1 (green),
k = 2 (red) and k = 3 (blue) with M = 0.001, xe = [−2, 2],
β = [0.5 1.0 1.5] and J = 1.001. The solid lines are simulations
and the dashed lines are analytical solutions of a series coupled
SQUID array.

Fig. 14. Σk(τ ) (top) and δk(τ ) (bottom) for k = 1 (green),
k = 2 (red) and k = 3 (blue) with M = 0.1, xe = [−2, 2],
β = [0.5 1.0 1.5] and J = 1.001. The solid lines are simulations
and the dashed lines are analytical solutions of a series coupled
SQUID array.

our system can have is Mmax = βmin. The derivation
was calculated in the masters thesis of Aven [70]. In this
situation βmin = 0.5, so M = 0.1 is an acceptable value for
the simulations. The solutions for Σk(τ) do not line up as
well as those for when M = 0.001, however the solutions
for δk(τ) are about the same. This is probably owing to
the solutions for δk,1 averaging near zero over time.

Using the same procedure to find numerical approxi-
mations for Σk(τ) and δk(τ) for other values in xe the av-
erage voltage response of the array of three SQUIDs can be
calculated, see Figure 15. The solutions are obtained with
the ten largest elements for the approximation of θk,1(τ)
and δk,1(τ) with M = 0.001, xe = [−2, 2], β = [0.5 1.0 1.5]
and J = 1.001. There is very strong correlation between
the two solutions. It is our hope that this technique can

Fig. 15. Average voltage comparison for three SQUIDs, con-
nected in series, where M = 0.001, xe = [−2, 2], β =
[0.5 1.0 1.5] and J = 1.001.

be extended in future work to arrays of N > 3 SQUIDs
and for the bi-SQUID array equations.

5 Conclusion

In this paper we performed an extensive, analytical and
computational, study of superconducting quantum inter-
ference devices (SQUIDs). While the basics of a single
DC SQUID perturbation analysis had been demonstrated,
an analysis like the one performed in this paper had not
been done before. The results from the two approaches
(straightforward and hybrid) to the perturbation analy-
sis showed strong correlation between the simulated re-
sponse and the numerical results for small values of β.
For larger values of β the straightforward approach solu-
tion deteriorates while the hybrid approach, which rep-
resents the phase dynamics as non-uniform motion on a
circle, continues to be an accurate approximation.

More specifically, for a single SQUID with values of
β > 0.5 and xe �= n, where n = 0,±1,±2, . . . the solutions
of the straightforward approach have a much greater error
than in the hybrid approach. The error progressively gets
worse as β increases and xe approaches n + 1

2 . This is
true for J ≥ 1, and every value of α and Σ0 tested. For
J < 1 there are values of xe for which the system is in the
superconducting state. For these circumstances a different
solution is needed, see work done by De Luca et al. [58]. On
the other hand the hybrid approach is sufficiently accurate
for any practical value of β, α and Σ0 when J ≥ 1.

The hybrid approach was determined to result in a
close analytical approximation for series coupled arrays of
SQUIDs both uncoupled and with nearest neighbor mu-
tual inductance coupling. Good comparisons were found
for SQUID arrays with J ≥ 1, all practical values at-
tempted Fof α, Σ0, M and βi, where i = 1, 2, . . . , N and
N is the number of SQUIDs in the array. To continue
this work the perturbation analysis needs to be extended
to the parallel coupled DC SQUIDs as well as to DC bi-
SQUID arrays. If accurate solutions are found, then the
time consuming integrations of the governing equations
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will no longer need to be performed, cutting down drasti-
cally on the time it takes to determine the average voltage
response.

Appendix A: Straightforward expansion
details

This Appendix outlines the details of the straightforward
perturbation analysis. The O(β0) and O(β1) systems of
equations are

dΣ0(τ)
dτ

= J − sinΣ0(τ) cos δ0(ν)

dδ0(ν)
dν

= −δ0(ν) + παxe, (A.1)

and the O(β1) equations become

dΣ1(τ)
dτ

= sin Σ0(τ) sin δ0(ν)δ1(ν)

− cosΣ0(τ) cos δ0(ν)Σ1(τ)

dδ1(ν)
dν

= −δ1(ν) − 1
2

sin δ0(ν) cos Σ0(τ). (A.2)

A.1 Solving the O(β0) system

The second equation in equation (A.1) is solved first. Since
ν = 2

β τ it can be assumed that for small values of β the

term δ0(ν) is quasi-statical in time or dδ0(ν)
dν ≈ 0, so

δ0(ν) = παxe.

Integrating the first equation in equation (A.1) yields

τ + C =
1√

J2 − cos2 δ0(ν)

× 2 arctan

(
1
2

2J tan
(

1
2Σ0(τ)

) − 2 cos δ0(ν)√
J2 − cos2 δ0(ν)

)
,

where 1∣∣∣ cos δ0(ν)
J

∣∣∣ > 1. Solving for Σ0(τ) gives

Σ0(τ) = 2 arctan
(
a +

√
1 − a2 tan (γτ + γC)

)
,

where a = cos δ0(ν)
J and γ = 1

2

√
J2 − cos2 δ0(ν). Using the

initial condition Σ0(0) to solve for C yields

C =
1
γ

arctan

(
tan

(
1
2Σ0(0)

)− a√
1 − a2

)
.

The full solution is then written as:

Σ0(τ) = 2 arctan
(
a +

√
1 − a2 tan (γt + arctan(ξ0))

)
,

where

a =
cos δ0(ν)

J
, γ =

1
2

√
J2 − cos2 δ0(ν)

and

ξ0 =
tan

(
1
2Σ0(0)

)− a√
1 − a2

.

A.2 Solving the O(β1) system

The second equation in equation (A.2) is solved by as-
suming that δ1 changes very slowly with respect to ν so
that

δ1(ν) = −1
2

sin (δ0(ν)) cos
(

Σ0

(
β

2
ν

))
,

where δ0(ν) and Σ0(β
2 ν) have already been solved. Now

the first equation in equation (A.2) is reorganized into the
form of a standard ODE

dΣ1(τ)
dτ

+ p(τ)Σ1(τ) = q(τ), (A.3)

where

p(τ) = cosΣ0(τ) cos δ0(ν)
q(τ) = sin Σ0(τ) sin δ0(ν)δ1(ν).

Equation (A.3) is solved using the integrating factor
technique

Σ1(τ) = e−
∫

p(τ)dτ

[∫
e
∫

p(τ)dτq(τ)dτ + C

]
. (A.4)

Before jumping straight into the integration, some manip-
ulation of p(τ) and q(τ) is needed. To start, p(τ) can be
written using the solutions to Σ0(τ) and δ0(ν)

p(τ) = cos (παxe) cos
(
2 arctan

(
a +

√
1 − a2

× tan
(
γτ + arctan(ξ0)

)))
.

Using the double angle trigonometric identity for cosine
gives

p(τ) = cos (2θ) cos (παxe) =
(
cos2 θ − sin2 θ

)
cos (παxe) ,

with θ = arctan
(
a +

√
1 − a2 tan (γτ + arctan(ξ0))

)
. The

trigonometric identity for tangent and the pythagorean
theorem results in the identities

cos θ =
1√

1 + (a +
√

1 − a2 tan (γτ + arctan(ξ0)))2

sin θ =
a +

√
1 − a2 tan (γτ + arctan(ξ0))√

1 + (a +
√

1 − a2 tan (γτ + arctan(ξ0)))2
.

(A.5)



Page 14 of 20

Using these identities, p(τ) becomes

p(τ) = cos (παxe)

× 1 − (a +
√

1 − a2 tan (γτ + arctan(ξ0))
)2

1 + (a +
√

1 − a2 tan (γτ + arctan(ξ0)))2
.

(A.6)

Similarly q(τ) can be expanded by using the solutions to
Σ0(τ), δ0(ν) and δ1(ν)

q(τ) = −1
2

sin2 (παxe)

× sin
(
2 arctan

(
a +

√
1 − a2 tan (γτ + arctan(ξ0))

))

× cos
(
2 arctan

(
a +

√
1 − a2 tan (γτ + arctan(ξ0))

))
,

and by using the double angle trigonometric identities for
cosine and sine results in

q(τ) = − sin2 (παxe) sin θ cos θ
(
cos2 θ − sin2 θ

)
,

where θ = arctan
(
a +

√
1 − a2 tan (γτ + arctan(ξ0))

)
.

From equation (A.5) q(τ) becomes

q(τ) = − sin2 (παxe)
κ(τ) − κ(τ)3

(1 + κ(τ)2)2
, (A.7)

where κ(τ) = a +
√

1 − a2 tan (γτ + arctan(ξ0)).
Using equations (A.6) and (A.7) the terms e−

∫
p(τ)dτ

and e
∫

p(τ)dτq(τ) are determined. First the integration of∫
p(τ)dτ is performed∫

p(τ)dτ = cos (παxe)
1
2

1√
1 − a2γa

×
(

ln (f1) (a2 − 1) + (1 − a2) ln (f2)

)
,

where

f1 =
1

cos(γτ + arctan(ξ0))2

f2 = 2a2 +
2a

√
1 − a2 sin(γτ + arctan(ξ0))
cos(γτ + arctan(ξ0))

+
1 − a2

cos2(γτ + arctan(ξ0))
.

Next, the exponential e−
∫

p(τ)dτ from equation (A.4) is
manipulated. We use three steps: ex+y = exey, ea ln(x) =
xa then xay−a = (x

y )a. The result is the equation

e−
∫

p(τ)dτ =
(

f1

f2

)√
1−a2 cos(παxe)

2γa

.

Using f1 and f2 the final form for e−
∫

p(τ)dτ is:

(
1

2a2 cosΓ 2 + 2a
√

A sin Γ cosΓ + A

)√
A cos(παxe)

2γa

, (A.8)

where Γ = γτ + arctan(ξ0) and A = 1 − a2. A similar
equation is determined for e

∫
p(τ)dτ

(
2a2 cosΓ 2 + 2a

√
A sin Γ cosΓ + A

)√
A cos(παxe)

2γa

. (A.9)

Using equations (A.8), (A.9) and (A.7) and integrating
equation (A.4), the solution to Σ1(τ) can be approximated
as:

Σ1(τ) =
8π sin(πxe)2

(
tan(Γ ) + a

√
A − a3

√
A
)

γa4A(1 + a2 + 2a
√

A tan(Γ ) + A tan(Γ )2)

+
8π sin(πxe)2

(−2 arctan(Γ )a + a4 tan(Γ )
)

γa4A(1 + a2 + 2a
√

A tan(Γ ) + A tan(Γ )2)

−π sin(πxe)2 ln(1 + a2 + 2a
√

A tan(Γ )
γa2

√
A

−−a2 tan(Γ )2 + tan(Γ )2)A
γa2

√
A

+
π sin(πxe)2

√
A ln(1 + tan(Γ )2)
γa2

+ C0,

where

C0 = e
∫ −p(τ)dτ

(∫
e
∫

p(τ)dτq(τ)dτ

∣∣∣∣
τ=0

)
Γ = γτ + arctan(ξ0)
A = 1 − a2

a =
cos δ0(ν)

J

γ =
1
2

√
J2 − cos2 δ0(ν)

ξ0 =
tan

(
1
2Σ0(0)

)− a√
1 − a2

.

The accuracy of the analytical approximation to Σ1(τ) is
verified by comparison with numerical integration of

dΣ1(τ)
dτ

= sin Σ0(τ) sin δ0(ν)δ1(ν)

− cosΣ0(τ) cos δ0(ν)Σ1(τ).

The simulated solution and the numerical approximation
shown in Figure A.1 appear to be identical to the naked
eye and have RMS = 3.14961×10−10 ≈ 0, where the Root
Mean Square (RMS) error is calculated

RMS =
1

NT

√√√√NT∑
i=1

(Σ1,s(i) − Σ1,a(i))2,

for which Σ1,s is the simulated solution, Σ1,a is the an-
alytical approximation and NT is the number of points
in τ .
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Fig. A.1. The simulated and numerical results for Σ1(τ ) where
xe = 0.25, β = α = 0.1, J = 1.001, Σ(0) = π

2
.

Appendix B: Hybrid expansion details

This Appendix outlines the details of the hybrid pertur-
bation analysis performed. The O(β0) system of equations
is

θ′0 = 1 + a0 cos θ0

δ̇0 = − 2
β

δ0 + 2 sin θ0 sin
(

δ0 + 2παxe

2

)
. (B.1)

Solving the O(ε0) system

A solution to θ0(τ) is found by transforming the first equa-
tion in equation (B.1) to uniform rotation which angles
through

θ0 → φ0 with
dφ0

dτ̄
= C,

where C is constant in time. Each side of this
transformation can be written as:

1 + a0 cos θ0 =
dθ0

dτ̄

dφ0

dτ̄
= C

dτ̄ =
dθ0

1 + a0 cos θ0
dτ̄ =

dφ0

C
.

Direct manipulation yields

dθ0

1 + a0 cos θ0
=

dφ0

C
. (B.2)

The antenna technology suggests that a2
0 > 12, so the in-

tegration of equation (B.2) over the period of oscillation is

2√
1 − a2

0

tan−1

[√
1 − a0

1 + a0
tan

(
θ0

2

)] ∣∣∣∣∣
2π

0

=
2π

C
,

which reduces to

C =
√

1 − a2
0,

for uniform motion. An equation of θ0 as a function of
φ0 is found by substituting C into equation (B.2) and
reorganizing

dφ0 =

√
1 − a2

0

1 + a0 cos θ0
dθ0.

Integrating each side gives

φ0(θ0) = 2 tan−1

[
b0 tan

(
θ0

2

)]
,

where b0 =
√

1−a0
1+a0

. Reorganizing to get θ0 as a function
of φ0 gives

θ0(φ0) = 2 tan−1

[
b−1
0 tan

(
φ0

2

)]
.

To get θ0(τ), first φ0 is solved as a function of τ

φ0(τ) = Cτ̄ = J
√

1 − a2
0τ = ω0τ,

where ω0 = J
√

1 − a2
0. Then, the final equation for θ0(τ)

is:

θ0(τ) = 2 tan−1
[
b−1
0 tan

(ω0τ

2

)]
,

where b0 =
√

1−a0
1+a0

, a0 = − 1
J cos( 〈δ〉+2παxe

2 ), and ω0 =

J
√

1 − a2
0.

Next, δ(τ) is solved by considering the second equation
in equation (B.1). Expanding sin( δ0+2παxe

2 ) using the an-
gle sum sine trigonometric identity yields

δ̇0 = − 2
β

δ0 + 2 sin θ0

[
cos
(

δ0

2

)
sin
(

2παxe

2

)

+ sin
(

δ0

2

)
cos
(

2παxe

2

)]
.

Using Taylor series expansions for cos( δ0
2 ) and sin( δ0

2 ) and
reducing δ̇0 to a first order ODE results in

δ̇0 = − 2
β

δ0

+ 2 sin θ0

[
sin (παxe) +

1
2

cos
(

2παxe

2

)
δ0

]
. (B.3)

Using the identity sin θ0 =
√

1−a2
0 sin(ω0τ)

1−a0 cos(ω0τ) , equation (B.3)
becomes

δ̇0 = − 2
β

δ0

+
2
√

1 − a2
0 sin(ω0τ)

1 − a0 cos(ω0τ)

[
sin(παxe) +

1
2
δ0 cos(παxe)

]
.

(B.4)
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To integrate, equation (B.4) is reorganized into a standard
form ODE

dδ0

dτ
+ p(τ)δ0 = q(τ),

where the functions p(τ) and p(τ) are

p(τ) =
2
β
−
√

1 − a2
0 cos(παxe) sin(ω0τ)

1 − a0 cos(ω0τ)

q(τ) =
2
√

1 − a2
0 sin(παxe) sin(ω0τ)

1 − a0 cos(ω0τ)
,

and which is solved using the integrating factor technique

δ0(τ) = e−
∫ τ
0 p(τ)dτ

∫ τ

0

e
∫ τ
0 p(τ)dτq(τ)dτ.

Integration gives∫
p(τ)dτ =

2
β

τ −
√

1 − a2
0

a0ω0
cos(παxe)

× ln
(

1 − a0 cos(ω0τ)
1 − a0

)
,

since 〈δ〉
2 ≈ 0 then

√
1−a2

0
a0ω0

cos(παxe) = −1. This means
that e−

∫
p(τ)dτ and e

∫
p(τ)dτ can be expressed as:

e−
∫

p(τ)dτ = e−
2
β τe

− ln
(

1−a0 cos(ω0τ)
1−a0

)

=
1 − a0

1 − a0 cos(ω0τ)
e−

2
β τ

e
∫

p(τ)dτ = e
2
β τe

ln
(

1−a0 cos(ω0τ)
1−a0

)

=
1 − a0 cos(ω0τ)

1 − a0
e

2
β τ . (B.5)

Using equation (B.5), δ0(τ) becomes

δ0(τ) = K

(
c sin(ω0τ) − cos(ω0τ)

1 − a0 cos(ω0τ)
+

e−
2
β τ

1 − a0 cos(ω0τ)

)
,

where K = 2 sin(παxe)
J(1+c2) and c = 2

βω0
. To consider only the

long-term behavior the limit is taken as τ → ∞, which
gives the final solution for δ0(τ)

lim
τ→∞ δ0(τ) = lim

t→∞

{
K

[
c sin(ω0τ) − cos(ω0τ)

1 − a0 cos(ω0τ)

+
e−

2
β τ

1 − a0 cos(ω0τ)

]}

= K
c sin(ω0τ) − cos(ω0τ)

1 − a0 cos(ω0τ)
.

To improve the results a first order frequency correction
Δω can be found such that φ(τ) = ωτ , where ω = ω0+Δω.
Recall that dφ

dτ̄ = ω
J , so applying the Chain rule yields

ω

J
=

dφ

dτ̄
=

dφ

dθ0

dθ0

dτ̄
.

From equations (B.2) and (11) and that ω0 = J
√

1 − a2
0,

Δω is solved to be

Δω = J

√
1 − a2

0

1 + a0 cos θ0
ε cos θ0.

Using the trig identities 1
1+a0 cos θ0

= 1−a0 cos φ0
1−a2

0
and

cos θ0 = cos φ0−a0
1−a0 cos φ0

then Δω can be rewritten as:

Δω =
J√

1 − a2
0

(a − a0)(cosφ0 − a0).

To make Δω independent of φ0 the average is performed
over one period T = 2π

Δω =
J√

1 − a2
0

1
2π

∫ 2π

0

(cosφ0 − a0)(a(φ0) − a0)dφ0.

(B.6)

To solve for Δω, a(φ0) = − 1
J cos( δ0(φ0)

2 + παxe) is
expanded in a Taylor series about παxe up to O(δ2

0)

a(φ0) = −cos(παxe)
J

+ O(δ3
0).

+
1
2

sin(παxe)
J

K
c sinφ0 − cosφ0

1 − a0 cosφ0
+

K2

8

× cos(παxe)
J

c2 sin2 φ0 − 2c sin φ0 cosφ0+ cos2 φ0

(1 − a0 cosφ0)
2 .

(B.7)

Substituting equation (B.7) into equation (B.6), perform-
ing the integrations and simplifying the correction to the
frequency becomes

Δω =
sin(παxe)K

2

√
1 − a2

0 − 1
a2
0

+
cos(παxe)K2

16
(a2

0 − 2 − c2(3a2
0 − 2))

√
1 − a2

0

a3
0(1 − a2

0)

−cos(παxe)K2

16
c2(2a4

0 − 4a2
0 + 2) + 2 − 2a2

0

a3
0(1 − a2

0)
.

Appendix C: Coupled expansion details

This Appendix outlines the details of the perturbation
analysis performed on a coupled system of three SQUIDs
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with nearest neighbor mutual inductance coupling. The
O(β1) system of equations is:

θ′1,1 =
1
2J

cos θ1,0 sin
(

δ1,0

2
+ πα1xe

)
δ1,1

+
1
J

sin θ1,0 cos
(

δ1,0

2
+ πα1xe

)
θ1,1

δ̇1,1 = − 2
β1

δ1,1 +
2

β1β2
δ2,0

+ sin θ1,0 cos
(

δ1,0

2
+ πα1xe

)
δ1,1

+ 2 cos θ1,0 sin
(

δ1,0

2
+ πα1xe

)
θ1,1

θ′2,1 =
1
2J

cos θ2,0 sin
(

δ2,0

2
+ πα2xe

)
δ2,1

+
1
J

sin θ2,0 cos
(

δ2,0

2
+ πα2xe

)
θ2,1

δ̇2,1 = − 2
β2

δ2,1 +
2

β2β3
δ3,0 +

2
β1β2

δ1,0

+ sin θ2,0 cos
(

δ2,0

2
+ πα2xe

)
δ2,1

+ 2 cos θ2,0 sin
(

δ2,0

2
+ πα2xe

)
θ2,1

θ′3,1 =
1
2J

cos θ3,0 sin
(

δ3,0

2
+ πα3xe

)
δ3,1

+
1
J

sin θ3,0 cos
(

δ3,0

2
+ πα3xe

)
θ3,1

δ̇3,1 = − 2
β3

δ3,1 +
2

β2β3
δ2,0

+ sin θ3,0 cos
(

δ3,0

2
+ πα3xe

)
δ3,1

+ 2 cos θ3,0 sin
(

δ3,0

2
+ πα3xe

)
θ3,1.

Solving the O(M1) system

The O(M1) equations with the time shift τ̄ = Jτ on the
θ equations are:

θ̇1,1 = A1δ1,1 + B1θ1,1

δ̇1,1 = P1 +
(
− 2

β1
+ B1

)
δ1,1 + 4A1θ1,1

θ̇2,1 = A2δ2,1 + B2θ2,1

δ̇2,1 = P2 + S2 +
(
− 2

β2
+ B2

)
δ2,1 + 4A2θ2,1

θ̇3,1 = A3δ3,1 + B3θ3,1

δ̇3,1 = S3 +
(
− 2

β3
+ B3

)
δ3,1 + 4A3θ3,1,

where

Ak =
1
2

cos θk,0 sin
(

δk,0 + 2παkxe

2

)

Bk = sin θk,0 cos
(

δk,0 + 2παkxe

2

)

Pk =
2

βkβk+1
δk+1,0

Sk =
2

βk−1βk
δk−1,0.

Substituting the solutions found for θk,0 and δk,0, Ak

and Bk become, after some manipulation

Ak =
1
2

1 −
(
b−1 tan

(
Ωk,0τ

2

))2

1 +
(
b−1 tan

(
Ωk,0τ

2

))2

×
(

sin
(

Kk,0

2
ck,0 sin(Ωk,0τ) − cos(Ωk,0τ)

1 − ak,0,0 cos(Ωk,0τ)

)

× cos(παkxe)

+ cos
(

Kk,0

2
ck,0 sin(Ωk,0τ) − cos(Ωk,0τ)

1 − ak,0,0 cos(Ωk,0τ)

)

× sin(παkxe)

)

Bk = 2
b−1 tan

(
Ωk,0τ

2

)
1 +

(
b−1 tan

(
Ωk,0τ

2

))2

×
(

cos
(

Kk,0

2
ck,0 sin(Ωk,0τ) − cos(Ωk,0τ)

1 − ak,0,0 cos(Ωk,0τ)

)

× cos(παkxe)

− sin
(

Kk,0

2
ck,0 sin(Ωk,0τ) − cos(Ωk,0τ)

1 − ak,0,0 cos(Ωk,0τ)

)

× sin(παkxe)

)

where Ωk,0 = ωk,0,0 + Δωk,0 and bk,0, ak,0,0, ck,0, Kk,0,
φk,0,0(τ), ωk,0,0 and Δωk,0 are the same as in the O(M0)
system. Substituting δk+1,0 and δk−1,0 into Pk and Sk,
respectively, gives:

Pk =
2

βkβk+1
Kk+1,0

ck+1,0 sin(Ωk+1,0τ) − cos(Ωk+1,0τ)
1 − ak+1,0,0 cos(Ωk+1,0τ)

Sk =
2

βk−1βk
Kk−1,0

ck−1,0 sin(Ωk−1,0τ) − cos(Ωk−1,0τ)
1 − ak−1,0,0 cos(Ωk−1,0τ)

.
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Fig. C.1. Simulated solutions θk,1(τ ) (top) and δk,1(τ ) (bot-
tom), k = 1, 2, 3, for β = [0.5 1.0 1.5], xe = 0.25 and J = 1.001.

Integrating the equations for θ̇k,1 and δ̇k,1, k = 1, 2, 3,
gives the time response shown in Figure C.1. On the left-
hand side is θk,1(τ) and on the right-hand side is δk,1(τ).
For these simulations, β1 = 0.5, β2 = 1.0, β3 = 1.5,
xe = 0.25 and J = 1.001. The dynamics cannot be re-
constructed by a simple function but rather a compilation
of many of cosine and sine functions might be needed.
To approximate these solutions a summation of sines and
cosines can be created using the frequencies present in a
power spectral density (PSD) of the simulated solutions.

Figure C.2 shows the PSD for θ1,1(τ) on the top and
and δ1,1(τ) on the bottom. The PSD is calculated using
a Fast Fourier Transform (FFT) using the Matlab func-
tion fft and is represented as θ1,1(f) = FFT (θ1,1(τ))
and δ1,1(f) = FFT (δ1,1(τ)). Similar plots were made for
θ2,1(τ), θ3,1(τ), δ2,1(τ) and δ3,1(τ). The solid lines rep-
resent the energy obtained from the FFT of the simula-
tions of the differential equations of θ1,1(τ) and δ1,1(τ).
The black dots represent the ten largest frequency con-
tributions to the dynamics of θ1,1(τ) and δ1,1(τ), which
are related to the most dominant cosine and sine modes.
Finally, the dashed lines are the PSD from the approxima-
tions of θ1,1(τ) and δ1,1(τ) using the ten largest frequency
contributions.

Using the ten dominant frequencies from the PSD, ap-
proximate equations for θ1,1(τ) and δ1,1(τ) can be found

Fig. C.2. PSD for θ1,1(τ ) on the top and and δ1,1(τ ) on the
bottom. The solid lines are the PSD from the simulations, the
black dots are the 10 largest frequency contributions and the
dashed lines are the PSD from the approximations of θ1,1(τ )
and δ1,1(τ ) using the 10 largest frequency contributions.

as a summation of cosines and sines. The variables θ2,1,
θ3,1, δ2,1 and δ3,1 are determined in a similar fashion, but
are not expressed explicitly for brevity. The approximate
equations for θ1,1(τ) are:

θ1,1 = 1.35965− 1.80654 cos(2π0.06104τ)

+ 0.16089 sin(2π0.06104τ) + 1.18016 cos(2π0.12207τ)

− 0.23745 sin(2π0.12207τ)− 0.76945 cos(2π0.18311τ)

+ 0.19376 sin(2π0.18311τ) + 0.07409 cos(2π0.01221τ)

− 0.73652 sin(2π0.01221τ)− 0.18301 cos(2π0.04883τ)

− 0.59082 sin(2π0.04883τ) + 0.49808 cos(2π0.24414τ)

− 0.17565 sin(2π0.24414τ) + 0.02975 cos(2π0.07324τ)

+ 0.45600 sin(2π0.07324τ)− 0.02099 cos(2π0.02441τ)

− 0.37402 sin(2π0.02441τ)− 0.32097 cos(2π0.30517τ)

+ 0.12903 sin(2π0.30516τ),
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Fig. C.3. Simulated results (solid lines) for θk,1 (top) and δk,1

(bottom), k = 1, 2, 3, compared with the approximated results
(dotted lines) with the top 10 largest contributions where β =
[0.5 1.0 1.5], xe = 0.25 and J = 1.001.

and for δ1,1(τ) are:

δ1,1 = 0.09565− 0.46271 cos(2π0.10986τ)

+ 0.29572 sin(2π0.10986τ)− 0.23259 cos(2π0.12207τ)

+ 0.00450 sin(2π0.12207τ) + 0.20171 cos(2π0.21973τ)

− 0.07327 sin(2π0.21973τ) + 0.17799 cos(2π0.18311τ)

+ 0.00985 sin(2π0.18311τ) + 0.15682 cos(2π0.30518τ)

− 0.01827 sin(2π0.30518τ) + 0.15388 cos(2π0.06104τ)

+ 0.03191 sin(2π0.06104τ)− 0.15438 cos(2π0.24414τ)

+ 0.00983 sin(2π0.24414τ)− 0.11733 cos(2π0.36621τ)

+ 0.02565 sin(2π0.36621τ)− 0.08875 cos(2π0.32959τ)

− 0.02995 sin(2π0.32959τ).

When the simulated results for θk,1 and δk,1, k = 1, 2, 3,
are plotted against the approximated results (obtained
with the ten most dominant frequency components) the
results are shown in Figure C.3. In this plot θk,1 are on
the top and δk,1 are on the bottom. The solid lines are

the results from the simulations and the dotted lines are
the results from the approximations. For these simulations
β1 = 0.5, β2 = 1.0, β3 = 1.5, xe = 0.25 and J = 1.001. The
results from the approximations with ten frequencies are
significantly close to the results from the simulations. If
the number of elements in the approximation is increased,
the simulated and approximated solutions become more
alike. For a very large number of elements, for instance the
top 100 frequency contributions, the two plots are almost
identical.
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