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Abstract. A simple, more physical and compelling version of the Interstitialcy Theory of Simple Condensed
Matter than that given previously is provided here. Also, computer simulation and direct and indirect
experimental evidence is updated and reviewed. The theory is based on the properties of an interstitial
in the interstitialcy, sometimes known as the dumbbell configuration. A free energy is derived, taking
account of the unusually large shear susceptibility and vibrational entropy of the dumbbell to find the
thermodynamic and kinetic properties of simple liquids and glasses. The connection between theory and
experiment for some of the more notable properties of simple condensed matter found later is also discussed.
The direct visual observation of interstitial diffusion to the surface in platinum near 20 K in irradiated thin
films by Morgenstern et al. [M. Morgenstern, T. Michely, G. Comsa, Phys. Rev. Lett. 79, 1305 (1997)] is
found to be sufficient compelling evidence for the interstitialcy theory.

1 Introduction

We give here a simpler, more physical and compelling
version of the Interstitialcy Theory of Simple Condensed
Matter (ITCM) than that given previously. We are not
aware of any other theory that gives the thermodynamic
and kinetic properties of simple matter in terms of the
properties of an intrinsic defect, known from earlier radi-
ation damage studies. This is the interstitial in the inter-
stitialcy configuration, sometimes referred to as the split
or dumbbell configuration. It is found that many complex
alloys have the same properties.

This theory was given previously [1], but in a form not
easily understood, due primarily we believe, to a combina-
tion of terms made to meet a space available restriction,
so that the physical effects were less easily recognized.
The unusual properties of liquids and glasses found are
due primarily to the large [1] shear susceptibility and [2]
entropy arising for crystals containing a few interstitial-
cies. These, in turn, result from the basic static and dy-
namic properties of the dumbbells. They are calculated
here quantitatively as simple derivatives of the free energy.

We show that the key quantity providing a second min-
imum in the free energy representing the liquid state at
high enough temperatures is the vibrational entropy. It
decreases at high concentration because of interactions
between the interstitialcies which reduce the amplitude
of vibration, and increase the vibrational frequencies, de-
creasing the entropy. This is what provides the second
minimum representing the liquid state.

a e-mail: granato@illinois.edu

2 The Helmholtz free energy

The Helmholtz free energy A is given by:

A = U − TS, (1)

where U is the internal energy, T the temperature and S
the entropy. The Gibbs free energy is given by:

= A + pV.

A is dependent on the independent variables: volume V ,
the shear strain ε, and temperature T , as well as the in-
terstitialcy concentration c = n/N , where n is the num-
ber of interstitialcies in a mole N of molecules, and N is
Avogadro’s number.

A = A(V, ε, T : c) and

 

=

 

(p, σ, T : c), (2)

where p is the external pressure and σ is an external shear
stress. The shear dependence is essential to the theory and
is usually ignored in other formulations.

We then have the thermodynamical properties

P =−∂A/∂V |T,c , σ= ∂A/∂ε |V,c , and S =−∂A/∂T |V,c

(3)

as first derivatives of A with

B = −V dP/dV = V
∂2A

∂V 2
, G =

∂σ

∂ε
= ∂2A/∂ε2,

and

Cv = −T∂S/∂T = −T
∂2A

∂T 2
|V,ε (4)
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Fig. 1. The internal energy (solid line) and the entropy term
(dashed line proportional to the temperature) as a function of
the interstitialcy concentration.

as second derivatives, where B is the bulk modulus, G the
shear modulus, and Cv is the specific heat at constant
volume.

For a crystal, we take an ideal crystal as one which
obeys the Murnaghan equation of state (1) B/Bo =
v−B1

= 1+B′(p/Bo), valid to megabar pressures for most
metals, where B depends only on volume, B = B(V, 0, 0),
and v = (V/V o). G depends on shear strain and temper-
ature G = G(V, ε, T ; c), and is periodic for shear displace-
ments in a crystal. B′ = dB/dp is a dimensionless con-
stant, with typical values near 5 for most metals, and 8
for noble gas crystals.

The internal energy U of a crystal containing a concen-
tration c of interstitialcies must be expressible in terms of
the macroscopic variables. By a dimensional analysis we
find

∂U/∂c = α1GΩ + α2BΩ, (5)

where Ω is the volume per atom, and α1 and α2 are con-
stants fitted to experimental results. It is expected (1)
that α2 < α1 = 1 − α2. Earlier it was found (1) that the
periodicity of the lattice implies

G/Go = exp(−βc), (6)

where β is a (large) shear susceptibility constant ∼20.
Now,

U =
∫ c

o

[α1GΩ + α2GΩ] dc=
α1GoΩ

β

[
1 − e−βc

]
+ α2BΩc

(7)

a normalized internal energy is given by:

U/ (α1GΩo) = [1 − exp (−βc)] /β + (α2/α1) (Bo/Go) c.
(8)

This is shown as the solid line in Figure 1.

3 The entropy

The entropy is the sum of a configurational (Sc) and a
vibrational (Sv) entropy,

S = Sc + Sv. (9)

The configurational entropy per defect Sc/nk is

Sc/nk = [1 + ln (z/c)] , (10)

Fig. 2. The Einstein frequency ωE, resonant frequency ωR,
and local mode frequency ωL sketched schematically. ωR is a
function of concentration c, while ωE and ωL are not.

where k is Boltzman’s constant, and z is the number (3) of
independent orientations of the interstitialcy. This differs
only by the factor z from the more familiar expression for
a vacancy.

Then

ΔSc/Nk = c [1 + ln (z/c)] . (11)

The vibrational entropy per defect can be much larger
and is known from radiation damage studies done ear-
lier [3]. Approximating the crystalline mode frequencies
by an Einstein frequency ωE , the 5 resonant modes by a
frequency ωR, and the 6 local modes by a frequency ωL,
we have:

ΔSv

Nk
= c

{
5ln

ωE

ωR
+ 6ln

ωE

ωL

}
. (12)

The resonant mode frequencies are given by:

ωR (0)
ω

E

=
LE

LR
=

1
5.3

, (13)

where ωR(0) is ωR at c = 0, and L is the width of the
interstitialcy.

The resonant modes interact with each other at finite c.
They intersect, decreasing the displacements and increas-
ing the frequencies, as indicated in Figures 2 and 3.

N = n (0) + n (c) ,

so that
1/Lc = 1/LR + δc, (14)

or
LR/Lc = 1 + δLRc, (15)

where δ measures the strength of the interaction. Then

ωc

ωE
=

LE

L (c)
=

LE

LR

LR

L (c)
=

LE

LR
(1 + δLrc)=

1
5

(1 + δLRc) .

(16)

Now the total entropy change becomes

ΔS

Nk
=

ΔSc

Nk
+

ΔSR

Nω

=
{

5ln 5.3 − 5ln (1 + δLRc) + 6ln
ωE

ωL
+

(
1 +

ln z

c

)}
.

(17)
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Fig. 3. Two interacting interstitialcies (a) at low c and (b) at
finite c. The scale is increased about a factor of two between (a)
and (b).

The high frequency local modes ωL provide an approxi-
mately constant contribution 6ln ωE

ωL
= −3.29. This can

be combined with the crystal constant term in ωR

5ln 5.3 to give 5 (1.67) − 3.29 = 5.06.

Then ΔS/Nk becomes:

ΔS

Nk
= {5.06 − 5ln (1 + δLRc) + (1 + ln zlc)} . (18)

The interaction term with δ provides a negative contribu-
tion, decreasing the entropy as shown in Figure 1 (dashed
line), and providing a second minimum in A for high
enough temperatures. A fit to the Lindemann law [1,4]
requires interaction strengths near δLR = 0.8.

A representation of the interstitialcy is shown in Fig-
ure 4 for simple materials. For c = 0, all atoms are at
equally spaced minima in a straight line. When an extra
atom is forced in, the atoms are pushed into a Frenkel-
Kontorova [2] solitonic configuration of width L. For an
alloy, the displacements are changed slightly, but the topo-
logical pattern remains the same, so that complex mate-
rials often behave as simple materials, producing only a
very small isotope effect.

As far as we are aware, it was Frenkel [3] who first used
the term “condensed matter”, presumably to emphasize
the close relationship between the crystalline and liquid
state of matter. Frenkel recognized the necessity of an in-
trinsic defect, but was unaware of the later results [5–9]
distinguishing the properties of vacancies and interstitials.
He proceeded assuming the necessary defects were vacan-
cies. His work was done in the 1920’s, but publication was
delayed because of world war II.

Combining the enthalpy and entropy terms, one ob-
tains the result for A(c) given in Figure 5 for different
temperatures. This is essentially the same as that found

Fig. 4. Particle positions/displacements. An interstitial forced
into the lattice produces displacements over a range L in a
Frenkel-Kontorova pattern. The topological singularity is more
important than the finite strain, so that complex materials of-
ten behave as simple materials, producing only a very small
isotope effect. d is the average nearest-neighbor distance in the
liquid or glassy state. Schematic indicates particle positions
for crystalline state (open circles) and interstitialcy configu-
rations (closed circles). Schematic indicates particle displace-
ments from positions before interstitialcy insertion for crys-
talline state (solid circles) and glassy state (open circles and
dashed line).

Fig. 5. The (normalized) Gibbs free-energy difference y as a
function of the (normalized) interstitialcy concentration x for
different temperatures t. The temperature is normalized to the
melting temperature. The parameters are chosen for copper.

earlier [10], as the parameters are the same. For low T ,
there is only one minimum near c = 0 for the solid state
for all T . For high enough T , there is a second minimum
at higher T representing the liquid state. When ΔA and
∂ΔA/∂T are 0, T is the melting temperature Tm and c
is cm. This gives a new form of the Lindemann law of
melting but has nothing to do with Lindemann’s crit-
ical average molecular displacement amplitude. At Tm,

http://www.epj.org
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Fig. 6. Elementary jump of an interstitialcy in an fcc Lat-
tice. Open circles (red), before jump; closed circles (blue), after
jump.

the mean-square displacement amplitude is not uniformly
distributed as assumed by Lindemann [4], but localized in-
stead at the interstitialcies, as indicated in Figure 3. For
high enough interstitialcy concentrations, they intersect,
reducing the vibrational amplitude and entropy and pro-
viding the second minimum in A representing the liquid
state.

At the inflection point of ΔA(c), known as the
Kauzmann temperature Tk, ΔS = 0. For lower temper-
atures the entropy would become negative. Many theories
have been invented to avoid this. Other properties would
become unusual as well. For example, the liquid state
shear modulus would be comparable to the bulk modu-
lus. This does not occur in the ITCM model since this is
not a quasi-equilibrium point and the system freezes into
a frozen liquid (amorphous) state as the temperature is
reduced, toward Tk.

For an interstitial jump, the changes in particles posi-
tions are as shown in Figure 6. The configuration (dashed
lines) moves a nearest neighbor distance. However no par-
ticle moves more than a fraction of that. This is similar
to the displacements for a dislocation in a crystal.

From equation (18), one sees that the net change in the
free energy is a difference between two large terms. Phys-
ical properties given as derivatives are additional differ-
ences. The good agreement with experiment found [11–13]
for these quantities implies that the free energy has been
given by the model with very high accuracy.

4 Comparison with computer simulations,
direct and indirect experiments

Using the shoving model put forward by Dyre et al. [14],
the kinetic properties of simple matter are also brought

within the framework of the ITCM. The shear modulus is
used to describe the migration energy of a particle. This is
similar but somewhat different from the ITCM, for which
the activation energy, also mainly proportional to G, rep-
resents the activation energy of diffusion, including the
formation energy. The migration energy is too small for
simple materials to cover the large observed range of vis-
cosities and diffusion. There have been many review ar-
ticles given by Dyre and his coworkers. One of the most
recent and comprehensive is The glass transition and elas-
tic models of glass-forming liquids [15].

A few selected experimental and theoretical charac-
teristic features of the dumbbell will be mentioned here
briefly.

4.1 Computer simulations

The extended nature involving many atoms of the inter-
stitialcy was first seen by Schober [16] and his associates.
The structure for simple metals is found in computer sim-
ulations by Kogure et al. [17,18] using the best available
potentials. An interstitialcy jumping from the liquid onto
the crystal surface was found by Ashkenazy and Aver-
back [19] and to the surface from the interior by Morgen-
stern et al. [20] (Fig. 8).

4.2 Experimental observations

4.2.1 Indirect

The large shear susceptibility was found with many related
results summarized in a book by Robrock [21,22].

One of the most characteristic features of supercooled
liquids and glasses is the temperature dependence of the
viscosity, which can range over 28 orders of magnitude
for a relatively small temperature range. A most fruit-
ful concept, the fragility F = ∂η/∂T , was introduced by
Angell [23,24], and has been used in hundreds of articles
since. It can be regarded as an extension of an earlier
notion by Nemilov [25] to describe non Arrhenius behav-
ior in oxide glasses. Angell pointed out the correlation of
fragility with the discontinuity in the specific heat at Tg.
A theory for this including the temperature dependence
of the specific heat and the shear modulus change was
given by Granato [26,27]. It is notable that η depends
on G, and c, equation (6) whether the system is in equi-
librium or not. The concept of fragility has had an enor-
mous impact on the literature of glasses and amorphous
materials, with two international conferences in the com-
ing year alone dedicated to celebrate this and the many
other seminal contributions of Angell.

Another much discussed feature arising from the reso-
nance modes is the boson peak, found in the specific heat
(Cp/T 3) in most glassy materials near 10 K or below.
There has been much confusion about this, in part arising
from overlap with the simultaneous existence of a lattice
dispersion peak a few degrees above the boson peak, found

http://www.epj.org


Eur. Phys. J. B (2014) 87: 18 Page 5 of 6

Fig. 7. Irradiation of Zr3Al [21]. (a) Shear modulus vs. lattice parameter change with irradiation. (b) Laue X-ray diffraction
patterns as a function of displacements per atom (dpa).

Fig. 8. Appearance of migrating self-interstitial atoms at the surface at 22 K: (a) Pt(111) after Ne+ (4.5 keV) ion bombardment
at 20 K, F = 1 × 1011 ions/cm2 (=9 impacts/950 Å× 950 Å); (b)–(d) same surface area as in (a), but obtained after keeping
the surface at 22 K for 2, 8, and 30 min, respectively. Circles mark the areas where additional adatoms (migrating interstitials)
appear, and arrows show their first appearance. The time at the annealing temperature and the number of additional adatoms
between two shown images are indicated. (U = 0.3 V, I = 1 nA).

by Harms et al. [28]. These can be distinguished by anneal-
ing, with the lattice dispersion peak increasing with an-
nealing, while the boson peak decreases [29]. For this work,
they prepared a single crystal of the material, so that the
shear modulus in the crystalline state was a measured ref-
erence point. Schwarz also produced, with Johnson [30],
the first bulk metallic alloys in the form of rods with a
few mm diameter, allowing for the measurement of bulk
properties such as the specific heat.

The fact that the shear modulus and volume change
(Fig. 7a), as well as the Laue X-ray diffraction patterns
(Fig. 7b) found by Okamoto et al. [31] show that the same
properties found at low doses in radiation damage remain
at doses four orders of magnitude larger is again evidence
for the ITCM. The glass transition is not sharp, as in a
phase transition, but gradual with increasing defect den-
sity, from characteristic crystalline Laue spots to amor-
phous ring patterns. For a certain range, both the Laue
crystalline and amorphous rings appear simultaneously.
This shows that the amorphous “phase” is a crystal con-
taining a sufficiently large concentration of defects. This
has been a stumbling block for many to overcome.

With the exception of the work by Khonik, Averback,
Kogure, and associates, the research was not done with

the intent of testing, or sometimes even knowledge of, the
ITCM, but it provided strong evidence for it.

4.2.2 Direct

The direct visual observation (Fig. 8) of interstitial dif-
fusion to the surface in platinum near 20 K in irradiated
thin films by Morgenstern et al. [20] using a variable tem-
perature scanning microscope (STM) technique provides
the most compelling evidence for the theory. The diffu-
sion parameters (activation energy and frequency factor)
are in good agreement with those found from resistivity
annealing measurements after much higher doses by Dib-
bert et al. [32,33]. When the Okamoto et al. and Dilbert
et al. experiments are added to the Morgenstern et al.
experiment, these together provide a final proof for the
ITCM.

5 Conclusion

In conclusion, a simple model for condensed matter is
given by intrinsic interstitials in the interstitialcy con-
figuration (ITCM). Good agreement with experiment
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has been found quantitatively with properties of simple
materials and also for complex alloys.

We acknowledge with thanks help and discussions with D.M.
Joncich and V.A. Khonik.
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