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Abstract. We consider the transport of non-interacting electrons on two- and three-dimensional random
Voronoi-Delaunay lattices. It was recently shown that these topologically disordered lattices feature strong
disorder anticorrelations between the coordination numbers that qualitatively change the properties of
continuous and first-order phase transitions. To determine whether or not these unusual features also
influence Anderson localization, we study the electronic wave functions by multifractal analysis and finite-
size scaling. We observe only localized states for all energies in the two-dimensional system. In three
dimensions, we find two Anderson transitions between localized and extended states very close to the band
edges. The critical exponent of the localization length is about 1.6. All these results agree with the usual
orthogonal universality class. Additional generic energetic randomness introduced via random potentials
does not lead to qualitative changes but allows us to obtain a phase diagram by varying the strength of
these potentials.

1 Introduction

More than 5 decades ago, Anderson [1] showed that ran-
dom disorder can localize a quantum particle in space.
This phenomenon, now called Anderson localization, and
the corresponding Anderson transitions between localized
and metallic phases have since attracted lots of experi-
mental and theoretical attention (see, e.g., Refs. [2–4] for
reviews). Remarkably, important features of Anderson lo-
calization, such as the existence of a metallic phase and
the qualitative characteristics of the Anderson transition,
depend on the dimensionality and the symmetries of the
system, in close analogy to conventional continuous phase
transitions.

This leads to a symmetry classification of Ander-
son transitions. Originally, three universality classes were
identified, based on the invariance of the Hamiltonian
under time reversal and spin rotations. These classes
(orthogonal, unitary, and symplectic) correspond to the
Wigner-Dyson classification of random matrices [5,6]. For
example, the orthogonal universality class contains sys-
tems that are invariant under both time reversal and spin
rotation. Later, this classification scheme was extended by
including additional symmetries (for a review, see, e.g.,
Evers and Mirlin [4]). Within each class, the properties
of the Anderson transition are expected to be univer-
sal. Specifically, all eigenstates in one-dimensional (1D)
and two-dimensional (2D) systems in the orthogonal class

a e-mail: martin.puschmann@physik.tu-chemnitz.de

are expected to be localized, implying the absence of an
Anderson transition1. In contrast, the states in three-
dimensional (3D) systems in the orthogonal class can un-
dergo a transition from localized to delocalized as energy
or disorder strength are varied; and this transition features
universal critical exponents.

These universal properties hold for uncorrelated ran-
domness; spatial disorder correlations can lead to different
behavior. Some short-range correlations have been shown
to produce extended states at specific, isolated energies
in an otherwise localized system, for instance in the so-
called dimer model [9]. In contrast, long-range correlations
can lead to the appearance of a true metallic phase (and
thus an Anderson transition), even in 1D. Some of these
developments are reviewed by Izrailev et al. [10].

In recent years, topologically disordered systems (lat-
tices with random connectivity) have attracted particular
attention because phase transitions in such systems fea-
ture surprising violations of the expected universal behav-
ior. This includes transitions in Ising and Potts magnets as
well as the contact process, all defined on random Voronoi-
Delaunay (VD) lattices [11–15]. Barghathi and Vojta [16]
solved this puzzle by showing that the 2D random VD
lattice belongs to a broad class of random lattices whose
disorder fluctuations feature strong anticorrelations and

1 Note that extended states (the so-called Azbel reso-
nances [7,8]) can be found at isolated values of the energy.
As their measure is zero and as they appear randomly in the
energy spectrum, they can usually be neglected.
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therefore decay faster with increasing length scale than
those of generic random systems. Such lattices are ubiq-
uitous in 2D because the Euler equation for a 2D graph
imposes a topological constraint on the coordination num-
bers; however, examples in higher dimensions exist as well.
The suppressed disorder fluctuations lead to important
modifications of the Harris [17] and Imry-Ma [18–21] cri-
teria that govern the effects of disorder on continuous and
first-order transitions, respectively.

These results immediately pose the question of
whether or not the unusual features of random VD lat-
tices also modify universal properties of Anderson local-
ization. Grimm et al. [22] studied the energy level dis-
tribution of a tight-binding model defined on a random
tessellation [23,24] similar to a VD lattice. They found
level repulsion indicative of extended states in the metallic
regime. However, to the best of our knowledge, a system-
atic finite-size scaling (FSS) study that would permit the
unambiguous identification of the metallic and localized
phases (and the Anderson transition between them) has
not yet been performed.

In this paper, we therefore investigate noninteracting
electrons on 2D and 3D random VD lattices. We perform
FSS based on a multifractal analysis (MFA) of the elec-
tronic wave functions. Our results can be summarized as
follows. In 2D, we observe localized states for all ener-
gies. In contrast, the 3D system features two Anderson
transitions between localized and extended states close to
the band edges. The critical exponent of the correlation
length takes the value ν ≈ 1.6, in agreement with the stan-
dard orthogonal universality class. This implies that the
unusual coordination number anticorrelations of random
VD lattices do not lead to qualitatively different behavior
compared to the well-known Anderson model of localiza-
tion on regular lattices.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the random VD lattices and define the
Hamiltonian. We also discuss FSS as well as the MFA of
the electronic states. Section 3 is devoted to the results of
our simulations for both 2D and 3D systems. We conclude
in Section 4.

2 Model and methods

2.1 Random Voronoi-Delaunay lattices

The random VD lattice is a prototypical system with topo-
logical (connectivity) disorder. It can be viewed as a sim-
ple model for amorphous solids, foams or biological cell
structures. The random VD lattice is defined as a set of
lattice sites at random positions together with the bonds
that connect nearest neighbor sites. These neighbors are
determined by the VD construction [25] as follows. The
entire system area (or volume, in the 3D case) is sub-
divided into disjoint polygons (Voronoi cells) containing
exactly one lattice site such that each cell contains all
points in space that are closer to that lattice site than to
any other site. The Voronoi diagram is the complete set
of these Voronoi cells. Lattice sites whose Voronoi cells

Fig. 1. Left: 2D Voronoi-Delaunay construction for N = 100
randomly positioned sites (dots) placed in a square of lin-
ear size L = 10. The grayed outer margins show the peri-
odic continuation of the original system (inner square). The
Voronoi cells (polygons) are colored arbitrarily. The lines con-
necting lattice sites show the Delaunay triangulation. Right:
MFA scheme for the same setup. The system is partitioned
into boxes of linear size l. The smallest box size lmin = 1 is
chosen such that each box contains one lattice site on average.

share an edge (or a face, in the 3D case) are considered
neighbors, irrespective of their real-space distance. In 2D,
the graph of all bonds connecting pairs of neighbors con-
sists of triangles only. It is called the Delaunay triangula-
tion. The corresponding construction in 3D leads to the
Delaunay tetrahedralization, a lattice consisting of tetra-
hedra only. We emphasize that random VD lattices are not
bipartite, i.e., they cannot be divided into disjoint sublat-
tices A and B such that each bond connects an A site to
a B site. A 2D example of a VD construction can be seen
in Figure 1.

In the following, we consider independent, uniformly
distributed random lattice sites of density unity contained
in a square or cubic box of linear size L. We employ pe-
riodic boundary conditions. More details of the algorithm
that we use to perform the VD construction are given in
the Appendix.

In a random VD lattice, the coordination number
(number of neighbors) κi fluctuates from site to site.
This topological disorder is illustrated in Figure 2. The
corresponding coordination number distribution can be
seen in Figure 3. The average coordination number in
2D is exactly 〈κ〉2D = 6. This is a consequence of the
Euler equation for a 2D graph consisting of triangles
only. In 3D, the average coordination number is given by
〈κ〉3D = 2 + (48/35)π2 ≈ 15.54 [26]. In both dimensions,
the mean coordination numbers are higher than those of
the regular square and cubic lattices often used in numer-
ical localization studies. The standard deviations of the
coordinations numbers are σκ ≈ 1.33 in 2D and σκ ≈ 3.36
in 3D. This means that the disorder is moderately strong.

2.2 Anderson model

We now consider the motion of noninteracting elec-
trons on a random VD lattice. We describe it by means
of a tight-binding model having one (Wannier) orbital
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Fig. 2. 40 × 40 section of a 2D random VD lattice. The color
of each Voronoi cell represents the coordination number of the
included lattice site.
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Fig. 3. Probability distribution of the coordination numbers
for 2D (left) and 3D (right) random VD lattices. The data are
averages over 500 systems of linear size L = 120 for 2D and
L = 24 for 3D. Here, the maximal coordination numbers are
15 and 35 for the 2D and the 3D system, respectively.

per lattice site. The corresponding Hamiltonian

H =
∑

〈i,j〉
|i〉 〈j| +

∑

i

υi |i〉 〈i| (1)

is analogous to the Anderson model of localization. The
first term describes the hopping of electrons between near-
est (Voronoi) neighbors. The hopping matrix element is
constant and fixed at unity. This term contains the topo-
logical disorder. The second term represents additional en-
ergetic randomness. The υi are random on-site potentials
uniformly distributed in the interval [−W/2, W/2]. We are
mostly interested in the case W = 0 for which the disorder
in the system is purely topological. However, for compari-
son with the usual Anderson model of localization, we also
consider nonzero random potential strength W .

To compute the densities of states (DOS), we directly
diagonalize the secular matrices. The system sizes are
L = 120 for 2D and L = 24 for 3D, limited by computer
memory. To find the eigenstates of the Hamiltonian (1)
close to a particular energy value for larger system sizes,
we use a sparse matrix algorithm based on the Jacobi-
Davidson method [27]. Here, we treat system sizes up to
L = 2000 for 2D and L = 140 for 3D.
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Fig. 4. Density of states for the tight-binding Hamiltonian (1)
on 2D (left) and 3D (right) random VD lattices for the case
of purely topological disorder, W = 0. The data are averages
over 500 systems of linear size L = 120 for 2D and L = 24 for
3D. The insets show magnifications of the right band edges.

Figure 4 shows an overview over the DOS resulting
from these calculations for purely topological disorder
(W = 0). As the VD lattices are not bipartite, the DOS
is not symmetric with respect to the energy E = 0. While
the DOS near the low-energy band edge increases rapidly,
there is a pronounced tail on the high-energy side, in par-
ticular in 3D. Interestingly, this tail does not stretch much
beyond E = 〈κ〉. States in the far tail live on rare large
clusters of sites with above average coordination numbers.
The fact that there are almost no states with E > 〈κ〉 re-
flects the strong disorder anticorrelations of the random
VD lattices that prevent the formation of large rare re-
gions [16]. We also note that the DOS in the 3D band
tail fluctuates significantly. We believe this is a finite-size
effect.

2.3 Finite-size scaling

The scaling approach is a phenomenological description
of the behavior close to the critical point of a con-
tinuous transition. We consider a general dimensionless
measure Λ(E, L) characterizing the electronic states as
function of energy E and a characteristic length, e.g., the
system size L. Close to the critical energy Ec, it fulfills
the scaling form [28,29]

Λ(E, L) = F
[
ΩrL

1
ν , ΩiL

−y
]
. (2)

The description contains the relevant scaling variable Ωr

associated with the relevant exponent ν as well as the
leading irrelevant scaling variable Ωi associated with the
irrelevant exponent −y. The dependence of the scaling
variables on E can be described in terms of the expansions

Ωr = ω +
mr∑

n=2

bn

n!
ωn (3)

and

Ωi = 1 +
mi∑

n=1

cn

n!
ωn (4)
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where ω = (E − Ec)/Ec is a dimensionless measure of the
distance from the critical energy. The scaling function

F
[
ΩrL

1
ν , ΩiL

−y
]

=
ni∑

n=0

Ωn
i L−ny

n!
Fn

[
ΩrL

1
ν

]
(5)

is expanded into a Taylor polynomial of the irrelevant vari-
able. The coefficients are the regular single-variable scaling
functions

Fn

[
ΩrL

1
ν

]
=

nr∑

k=0

an,kTk

(
ΩrL

1
ν

)
. (6)

They are expanded into Chebyshev polynomials Tk(·) of
the first kind and the kth order. This general expansion
depends on the four expansion orders nr, ni, mr, and mi

yielding (nr +1)(ni +1)+mr +mi +1+Θ(ni) free param-
eters. Their values are found by weighted nonlinear fits to
the numerical data. The weights are formed by the recip-
rocal variances of the data points. This formalism allows
us to simultaneously determine Ec, ν, and y.

In order to get error estimates of these values we use
a Monte-Carlo method [30]. It consists in building at
least 104 synthetic data sets by adding noise to the original
values. This noise is created by Gaussian random numbers
with a standard deviation σ equal to the individual error of
each data point. By fitting Λ to these synthetic data sets
we obtain distributions for the parameter values. These
distributions are usually Gaussian. Large deviations, e.g.,
superpositions of multiple Gaussians, are interpreted as
instabilities. The corresponding regressions are not well
defined and will be neglected. (This could be avoided by
increasing the accuracy of the data, changing the number
of parameters, or varying the initial conditions.) We note
that this method constitutes an error-propagation calcu-
lation for the random errors only. Systematic errors are
not detected completely, but the influence of different ex-
pansion orders can be identified.

2.4 Multifractal analysis

Multifractal behavior is a feature of eigenstates at critical
points [31]. The MFA is based on a standard box-counting
algorithm. The boxes are squares or cubes for 2D and 3D
systems, respectively. The d-dimensional system of size Ld

is partitioned into boxes of size ld (see Fig. 1). Using the
probability

μb(Φ, l, L) =
∑

r∈box b

|Φr|2 (7)

to find the electron in the bth box, the measure

Pq(Φ, l, L) =
∑

b

μq
b(Φ, l, L) (8)

is constructed from its qth moment. Depending on q,
this measure is dominated by boxes with either large or
small μb. For multifractal wave functions, Pq is expected

to behave as a power of the normalized box size λ = l/L,
with the scaling exponent (mass exponent)

τq(Φ, l, L) = lim
λ→0

ln Pq(Φ, l, L)
ln λ

. (9)

The singularity spectrum f(αq) is the Legendre transform
of τq, and it comprises the scaling exponents of the fractal
dimensions of all moments. A parametric representation
of the singularity spectrum can be obtained by calculating
the singularity strength

αq =
dτq

dq
= lim

λ→0

∑
b μ̄q

b ln μb

ln λ
(10)

and the fractal dimension

fq = qαq − τq = lim
λ→0

∑
b μ̄q

b ln μ̄q
b

ln λ
(11)

with

μ̄q
b =

μq
b

Pq(Φ, l, L)
. (12)

For statistical purposes, we utilize the ensemble aver-
age of these exponents [4,32,33]. In particular, we use
the ensemble averaged singularity strength

αq = lim
λ→0

Aq(l, L)
ln λ

(13)

with

Aq(l, L) =
〈∑b μq

b ln μb〉Φ
〈∑b μq

b〉Φ
(14)

to perform the finite-size scaling analysis outlined in the
last section. 〈·〉Φ denotes the average over different eigen-
states. When determining the error of Aq, one has to
take into account that the numerator and denominator
are correlated with each other [30].

Only integer box ratios λ−1 = L/l are possible when
partitioning the original system without overlap. A gen-
eral ratio can be used by employing the periodic boundary
conditions to fold back into the real system any protrud-
ing box parts that arise for noninteger λ−1 = L/l [34,35].
To obtain a uniform sampling, we are then required to
average over all possible box origins.

To extrapolate to the thermodynamic limit λ → 0 in
equation (13), we perform a linear least-squares fit of the
numerator versus the denominator at fixed L (box-size
scaling). The standard deviations σ of Aq(l) are utilized
to determine the inaccuracy of the regression values. To
approach the limit λ → 0, sufficiently small values of l
have to be taken into account. However, for the small-
est l, the data deviate from the power-law behavior be-
cause corrections to scaling that stem from the irrelevant
scaling variables become important. Their influence on
the estimated exponent values can be reduced by opti-
mizing the fit boundaries. We use λ ∈ [0.1, 0.3] for 2D and
λ ∈ [0.3, 0.5] for 3D.
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Fig. 5. Probability distributions of the distances between
neighboring sites: all (left), minimal (middle), and maximal
(right) distances to neighboring sites. The data are averages
over 500 realizations of 2D (upper panels) and 3D (lower
panels) VD lattices with L = 120 and L = 24, respectively.

In random VD lattices, the cells have varying sizes; the
resolution of the MFA given by the smallest box size lmin

is therefore arbitrary. We use lmin = 1, such that the aver-
age number of sites per box is 1 (see Fig. 1). Since empty
boxes affect the MFA results, only box sizes larger than
the maximum distance between neighboring sites are in-
cluded in the MFA analysis. This guarantees that there
are no empty boxes. In both dimensions, we use l > 4 in
accordance with the distributions shown in the right panel
of Figure 5.

3 Results

3.1 2D system

Figure 6 shows five representative eigenstates of the en-
ergy spectrum of a 2D system with L = 120 and W = 0.
The wave function of the lowest eigenvalue (Fig. 6a) is
exponentially localized. The maximum amplitude is con-
centrated at the single Voronoi cell with highest coordi-
nation number (here κ = 12). States on the upper band
edge also show localized behavior very clearly (Fig. 6e).
However, the highest amplitude is orders of magnitude
smaller and, correspondingly, the localization length is
larger. More generally, states of smaller energy are influ-
enced by local fluctuations of the coordination number.
States of higher energy are driven by interferences and the
probability amplitudes behave as non-integrable Chladni
figures [36]. The number of antinodes increases with de-
creasing eigenenergy. In summary, this is a visualization of
localization in a classical and quantum mechanical manner
for the states close to the lower and the upper band edge,
respectively. Towards the band center the amplitude fluc-
tuations increase and a classification by visual inspection
is not easily possible anymore.

We therefore turn to the MFA to quantitatively charac-
terize the eigenstates as function of energy. Specifically, we
consider the FSS behavior of αq for systems from L = 60
up to 2000 with 1000 states per data point. Figure 7 shows
the box-size scaling of Aq(l, L) used to estimate αq for
several q. Whereas values at higher λ show the expected
power-law dependence on λ, results for small l deviate
systematically due to finite-size effects. Therefore, they
are neglected as discussed before. The multifractal spec-
tra f(α) resulting from the analysis are also shown in Fig-
ure 7 for representative energies close to the upper band
edge. For the energy E = 6.2, we obtain a parabola-like
shape as expected. Towards the band center the parabola
shrinks (see E = 5.7) and approaches the limiting case
for completely extended wave functions, namely the sin-
gle point (2, 2). In the opposite direction, close to the band
edge, the spectrum transforms towards the extremely lo-
calized limit, the points (0, 0) for negative q and (∞, 2)
for positive q.

The behavior of αq =0(E, L) (the position of the maxi-
mum of the parabola) is shown in more detail in Figure 8.
For energy values close to the band edge, αq =0 gener-
ally increases with L. This means that these states are
localized. The strength of the localization depends on E.
The pronounced localization at the lower band edge seen
in Figure 6 is reproduced here. Strongly fluctuating wave
functions near the band center have a value close to α = 2
for all system sizes within their accuracy. The envelopes
of corresponding wave functions have a very large local-
ization length (larger than the system size). Importantly,
the curves for different L do not show a common cross-
ing point, implying that there is no Anderson transition.
All states are localized. (The seeming crossings at very
large αq =0(E, L) in Fig. 8 can be attributed to numerical
artifacts.)

We have also studied the effects of additional potential
disorder W = 2 and W = 4. It results in a broadening of
the DOS and an enhancement of the localization. How-
ever, qualitative changes compared to W = 0 were not
found. All states are localized.

3.2 3D system

The data analysis for the 3D VD lattice proceeds analo-
gously. We use system sizes between L = 20 and L = 140.
In contrast to the 2D system, we observe two Anderson
transitions induced by purely topological disorder. These
transitions are located close to the two energy band edges.
The corresponding FSS behavior of αq =0 is visualized in
Figure 9 for the transition near the lower band edge and in
Figure 10 for the upper edge. Thus, localized states exist
only near the band edges. The broad central area of the en-
ergy band encompasses extended states. This corresponds
to the fact that the topological disorder is only moderately
strong and results in localization behavior similar to that
of a weakly disordered regular Anderson model.

As shown in Figure 9, the singularity strength αq fea-
tures a smooth energy dependence for the transition near
the lower band edge. Thus, the FSS approach is applicable.



Page 6 of 9

−4

−3

−2

−1

0

1

1
+

lo
g

N
φ

2 i

a b c d e

Fig. 6. Eigenstates for different energies (from left to right: −3.27, −2.89, 0.00, 5.80, and 6.31) of the same 2D VD lattice.
Plots (a) and (e) show the wave functions of the lowest and highest eigenvalue, respectively. The amplitude φ2
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state, the color black corresponds to a state localized on a single site.
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Fig. 8. Scaling behavior of αq = 0(L, E) in 2D VD lattices for
energies close to lower and upper band edge. Each data point
is an average over 1000 eigenstates close to the respective E.
Error bars show 1σ intervals.

The results are presented in Table 1. It can be seen that
the critical parameters Ec, ν and y are influenced by the
irrelevant scaling variable. We compare different expan-
sion orders to demonstrate the stability of the regression
results. In particular, we neglect the data of small sys-
tems L < 50 and use a FSS approach without irregular
expansion (ni = 0). Such regressions show a higher robust-
ness when changing initial conditions. Taking into account
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Fig. 9. Scaling behavior of αq = 0 in 3D VD lattices as function
of system size L and energy E close to the lower band edge.
Each data point is an average over 2000 eigenstates of different
lattices close to the respective E. Error bars show 1σ intervals.
Lines are result of the scaling approach with nr = 4, ni = 1,
mi = 0, and mr = 3 (see Tab. 1 for more details). The solid
and dashed gray lines mark the estimated transition point and
the corresponding 1σ error interval, respectively. Lower plots
show the distributions of critical parameters obtained from 104

synthetic data sets.

all data, we estimate the critical energy Ec = −5.122(3)
and the critical exponent ν = 1.62(4). The results of re-
gressions without the irrelevant scaling variable deviate
slightly (Ec = −5.121(1) and ν = 1.58(4)) because of the
neglected systematic shift of the intersections described
by the irrelevant term. The quality of all fits is very close
to unity. This indicates that the errors of the original data
points were overestimated.

For the transition near the upper band edge, the αq =0

curves shown in Figure 10 are very noisy. This is caused
by the low DOS (see right panel of Fig. 4) and finite size
effects. The existence of a transition can still be inferred
because αq = 0 decreases with L for the smaller energies,
while it increases with L for the largest energies. This in-
dicates a crossing and thus an Anderson transition. How-
ever, a clear transition point cannot be determined from
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Table 1. Estimates of the critical parameters Ec, ν, and y with their standard deviations for the transition near the lower
energy band edge. The indices l and u denote the lower and upper bound of considered sizes, respectively. Q is the quality
of fit. NP and NF are the number of points and degrees of freedom, respectively. αq = 0 was analyzed in the energy range
E ∈ [−5.17, −5.07] with 2000 eigenstates per data point. We set mi = 0 always.

E σE ν σν y σy Ll Lu nr ni mr χ2 NP NF Q
−5.1207 0.0005 1.580 0.0423 – – 50 100 4 0 3 45.7 126 117 1.0000
−5.1206 0.0005 1.577 0.0404 – – 50 100 4 0 4 45.5 126 116 1.0000
−5.1220 0.0010 1.626 0.0449 2.188 0.444 20 100 4 1 3 51.6 189 174 1.0000
−5.1220 0.0010 1.623 0.0494 2.157 0.447 20 100 4 1 4 51.6 189 173 1.0000
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Fig. 10. Behavior of αq in 3D VD lattices as function of system
size L and energy E close to the upper band edge. Number of
considered eigenstates differs for different data points and is
reflected in the error bars (1σ intervals).

-20 -10 0 10 20 300.00

0.05

0.10

0.15

E

ρ

0
10
20
30
40

W =

Fig. 11. DOS for the 3D VD lattice with additional potential
disorder. The data are averages over 500 systems of linear size
L = 24.

the available data. In particular, the values are insufficient
to perform a scaling analysis. (Also note that for small
systems, gaps in the DOS appear. Therefore the number
of considered eigenstates varies from 10 to 8000 between
data points, leading to strong variations in the error bars.)
A rough estimate of the critical energy is Ec = 16.31.

We now turn to the effects of additional on-site dis-
order, i.e., W �= 0. As in 2D, on-site disorder leads
to a broadening of the DOS with increasing disorder
strength W , this is demonstrated in Figure 11. To find
the localization phase diagram, we have performed a num-
ber of calculations with either fixed E or fixed W . System
sizes L = 50, 60, and 70 were used with 10 data points for
each L to determine the critical points. Figure 12 shows
the resulting phase diagram. The region of delocalized
states is asymmetric. For positive energies, it extends to-
wards higher disorder with a maximal disorder strength
Wmax

c = 47.5 at E = 22. Figure 13 shows the localization
transition near the upper band edge for fixed W = 25.

-30 -20 -10 0 10 20 300

20

40

E

W

Fig. 12. Phase diagram of the 3D VD lattice. Localized and
delocalized (red shaded area) states are separated by the mo-
bility edge (thick red line). The inaccuracy of the measured
transitions (red dots) is smaller than the symbol size. The thin
gray and black lines are contours of the DOS between 0.0 and
0.1 staggered by 0.005.

The additional potential disorder smoothes the density of
states and suppresses the artifacts in the αq =0 data seen
for the pure 3D VD lattice. The FSS approach is thus
applicable. We obtain Ec = 19.69(1) and ν = 1.55(14).

The transition induced by W at fixed energy E = 10
is studied in detail in order to obtain a more accurate esti-
mate of ν for systems with both topological and potential
disorder. The data analysis resembles the analysis of the
transition tuned by E for W = 0, as described above. The
details are summarized in Table 2. We observe a critical
exponent ν = 1.59(6) in agreement with the result for
purely topological disorder.

4 Conclusion

To summarize, we have studied the effects of topological
disorder on Anderson localization. To this end, we have in-
vestigated the wave functions of noninteracting electrons
on random Voronoi-Delaunay lattices by multifractal anal-
ysis and finite-size scaling. In two dimensions, there is no
Anderson transition as all states are localized, even in the
absence of extra potential disorder. Adding random po-
tentials further enhances the localization. In contrast, in
three dimensions, the topological disorder of the Voronoi-
Delaunay lattice induces two Anderson transitions close
to the edges of the energy band, with localized states in
the tails and extended states in the bulk of the band. If
extra random potentials are added, the region of extended
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Table 2. Same as Table 1, but for the transition at fixed E = 10. αq = 0 was analyzed in the disorder range W ∈ [38.5, 43.5].

W σW ν σν y σy Ll Lu nr ni mr χ2 NP NF Q
40.4181 0.0301 1.591 0.0294 – – 50 100 2 0 2 43.0 150 144 1.0000
40.4224 0.0318 1.586 0.0315 – – 50 100 2 0 3 42.8 150 143 1.0000
40.3287 0.0772 1.585 0.0554 1.871 0.539 20 100 2 1 2 51.7 225 215 1.0000
40.2947 0.0827 1.607 0.0592 1.671 0.581 20 100 2 1 3 51.2 225 214 1.0000
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Fig. 13. Scaling behavior (left) of αq = 0 in 3D VD lattices
with additional potential disorder W = 25, as function of sys-
tem size L and energy E close to the upper band edge. Each
data point is an average over 1000 eigenstates of different lat-
tices close to the respective E. Error bars show 1σ intervals.
Lines are result of the scaling approach with nr = 4, ni = 0,
mi = 0, and mr = 2. The estimated exponent is ν = 1.55(14).
The solid and dashed gray lines mark the estimated transi-
tion point Ec = 19.69(1) and the corresponding 1σ error inter-
val, respectively. Right plots show the distributions of critical
parameters obtained from 104 synthetic data sets.

states first broadens with the broadening density of states,
but then it shrinks and vanishes at some critical random
potential strength.

All these qualitative features agree with those of the
usual Anderson model of localization. This means that
the anticorrelations of the topological disorder [16] do not
affect the universal properties of Anderson localization.
This also holds for the critical behavior of the localization
transition in three dimensions. The correlation exponents
found in the present paper, viz., ν = 1.62(4) for purely
topological disorder and ν = 1.59(6) for combined topo-
logical and energetic disorder, agree within their errors
with high-precision results for the usual Anderson model
of localization [30,37].

Why is Anderson localization not (qualitatively)
affected by the disorder anticorrelations of the
Voronoi-Delaunay lattice even though other continu-
ous and first-order phase transitions are qualitatively
changed and violate the usual Harris and Imry-Ma
criteria? In the systems in which these violations have
been found [11–15], the coordination number directly
determines the local distance from the transition point
because the effective coupling strength is simply the
sum over the effects of all neighbors. Anticorrelations of
the coordination numbers thus generate anticorrelated
random-mass (or random-Tc) disorder. Anderson localiza-
tion is more complex. In particular, quantum interference

effects are crucial, at least away from the band edges, and
these effects are not captured by the coordination number
alone. Note, however, that the electronic states in the
band tails, where the localization is mostly classical, do
seem to be influenced by the disorder anticorrelations (see
discussion at the end of Sect. 2.2). Clearly, more work
will be necessary to fully resolve the effects of topological
disorder on Anderson localization.

This work was supported by the NSF under Grant No. DMR-
1205803. We acknowledge useful discussions with H. Barghathi.

Appendix: Algorithm for creating random
Voronoi-Delaunay lattices

Computing the Voronoi diagram or the Delaunay triangu-
lation of a given set of points (lattice sites) is a standard
problem of computational geometry, and many different
algorithms are discussed in text books and the research
literature (see, e.g., Ref. [38]). Our algorithm follows a
suggestion by Tanemura et al. [39] and is based on the
remarkable “empty circumcircle property” of a 2D De-
launay triangulation. It states that every triangle formed
by the bonds (edges) of the Delaunay triangulation has
an empty circumcircle, i.e., a circumcircle that does not
contain any other lattice sites. This is illustrated in Fig-
ure A.1. Analogously, a 3D Delaunay tessellation features
an “empty circumsphere property”: Each of the tetrahe-
dra making up the tessellation has a circumsphere that
does not contain any other lattice sites.

Our algorithm considers the lattice sites one by one
and finds the list of its (Voronoi) neighbors. This is done in
a two-step process: (i) We first identify candidates for the
neighbors based on their distance. All sites within a dis-
tance Rc from the given site are included in the candidate
list. For optimal performance, the cutoff radius Rc should
be chosen as small as possible without missing neighbors,
reasonable values depend on the structure of the set of lat-
tice sites under consideration (see below). (ii) From these
candidates, we then construct all triangles (in 2D) with
empty circumcirles for which the given site is one of the
vertices. In 3D, we construct all tetrahedra with empty
circumspheres for which the given site is a vertex. The
entire algorithm can be coded efficiently in less than 400
lines of Fortran 90 in 2D and less than 500 lines in 3D.

For the current project, we have applied these algo-
rithms to sets of L2 (2D) or L3 (3D) uniformly distributed
random sites of density unity contained in a square or cu-
bic box of linear size L. The sizes range up to L = 2000 in
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Fig. A.1. Left: Valid Delaunay triangulation, the circumcircle
of the three chosen (red) sites does not contain any other sites.
Right: This triangulation of the same set of sites violates the
empty circumcircle property because the circumcircle of the
chosen triangle (formed by the red sites) does contain other
sites.

2D and L = 140 in 3D, and we use periodic boundary con-
ditions. We found that the necessary values of the cutoff
radius Rc are quite small because the bond-length dis-
tribution of the random VD lattice drops off rapidly with
increasing distance, see Figure 5 (in 2D, the tail is approx-
imately Gaussian). Empirically, we found that Rc = 5.7 in
2D and Rc = 3.7 in 3D are sufficient to find all neighbors
in all the lattices we considered.

For system sizes L > Rc, the computational effort of
our algorithm scales approximately linearly with the num-
ber of sites. To give an example of the performance, finding
the Delaunay triangulation of 106 sites in 2D takes about
30 s on an Intel core i5-3570 CPU while 106 sites in 3D
take about 3 min.
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36. J. Stein, H.J. Stöckmann, Phys. Rev. Lett. 68, 2867 (1992)
37. K. Slevin, T. Ohtsuki, New J. Phys. 16, 015012 (2014)
38. M. de Berg, O. Cheong, M. van Kreveld, M. Overmars,

Computational Geometry: Algorithms and Applications
(Springer, Berlin, 2008)

39. M. Tanemura, T. Ogawa, N. Ogita, J. Comput. Phys. 51,
191 (1983)

http://homepages.ulb.ac.be/~jadamilu/
http://homepages.ulb.ac.be/~jadamilu/

	Introduction
	Model and methods
	Results
	Conclusion
	Algorithm for creating random  Voronoi-Delaunay lattices
	References

		2015-11-17T17:08:35+0000
	Preflight Ticket Signature




