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Abstract. Ultrafast laser pulses provide a new tool for material processing. The ultrafast regime leads to
nonlinear absorption and nonthermal interaction with the target yielding significant advantages in solar
cells micromachining over traditional mechanical or Q-switched laser processes: high process speed, high
energetic efficiency, reduced heat affected zone (HAZ), high quality and precision of the realized structures.
Therefore, a description of the dominant physical processes underlying the ultrafast laser-matter interaction
is needed to develop a simplified model able to provide an explanation of the different aspect of the process.
This paper provides an overview of the fundamental equations governing the laser-material interaction
process in a typical dielectric-semiconductor structure and discusses the solution on a 3D axisymmetric
domain obtained with a finite element method (FEM) software applied to the problem of selective dielectric
delamination in PV solar cells.

1 Introduction

In the fabrication of a silicon PV solar cell, several steps involve direct material ablation. For example, the active area
of the cell must be isolated from the edges to prevent shunting of the junction itself, which accounts for the 15% of
the total loss mechanism [1]. To do so, a groove following the perimeter of the cell is scribed completely through the
n-type layer, which depth is in the order of few microns. The quality of the groove in terms of shape factor (which
impacts on the total cell shading, i.e. the fraction of active area lost) and the minimization of the damage to the
surrounding structures are then crucial to achieve the maximum cell efficiency.

Another issue is the realization of openings in the dielectric layer on PERC (passivated emitter rear cell) type
cells, either on the front or the back, to allow the formation of the metal contacts. The aim here is to selectively
remove the dielectric layer without damaging the semiconductor beneath. It has been proven that it is possible to use
sub-picosecond pulses with photon energies above the silicon bandgap to selectively delaminate the dielectric layer
without noticeable damage to the opened surface [2]. Currently different opening patterns are being studied for the
optimal trade-off between surface passivation and resulting contact series resistance [3].

Recently, aside the conventional chemical etching techniques, ablation techniques involving laser pulses are being
utilized, such as nanosecond Q-switched pulsed laser. However it is only with the development of chirped pulse
amplification (CPA), which led up to commercially available femtosecond laser systems in the mJ pulse energy range,
that ultrashort pulses are being investigated for solar cell industrial micromachining.

In ablation with pulsed laser radiation, depending on the respective pulse length range, different beam-matter
interaction mechanisms become dominant. As compared in fig. 1, for longer laser pulses in the micro- and nanosecond
regime the ablation process is dominated by heat conduction, melting and evaporation. Because the pulse duration
and heat conduction are roughly in the same timescale, there is significant time for heat conduction to occur before
the pulse ends. Energy of the laser pulse is absorbed on the surface of the workpiece and heat conduction leads to
the formation of a temperature field. Depending on the achieved temperature the material is molten or evaporates.
Ablation is determined by both evaporation and melt expulsion. An approach that instead of direct laser ablation
exploits the temperature-induced stress field to induce the scribing of the semiconductor layer on thin film CIGS solar
cells was demonstrated in [4].
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Fig. 1. Laser-target interaction. Left: short pulse regime; right: ultrashort pulse regime.

For ultrashort pico- and femtosecond laser pulses and the thereby related short timescales, these classical descrip-
tions of beam-matter interaction lose their validity. Due to the high intensity of ultrashort laser pulses, the absorption
is increased by nonlinear multi-photon absorption processes and by the high density free electron plasma that is pro-
duced. Furthermore, within pico- and femtosecond timescales the energy transfer from the electron gas to the lattice
is not possible. Hence the need for a different thermal description that distinguishes between electron and lattice
temperature: the two-temperature model (TTM) [5, 6]. In ultrashort pulse laser ablation extreme pressures, densities
and temperatures build up and accelerate the ionized material to high velocities. Due to the short interaction time the
material cannot evaporate continuously but is transferred into a state of overheated liquid. This merges into a high
pressure mixture of liquid droplets and vapor expanding rapidly, leading to ablation.

2 Fundamental equations

Following the approach developed in [7] and [8], the change in the optical properties of the excited material due to
the presence of a free electron gas can be described in the Drude approximation with a complex dielectric function:

ε = εm − ne

ncr

1
1 + i/(ωτD)

, (1)

where ω is the laser frequency, εm is the unexcited material dielectric function, τD is the Drude damping time and ne

is the number of photogenerated electrons. At the critical electron density

ncr = ε0 me ω2/e2 (2)

the plasma becomes strongly absorbing and the reflectivity increases. e and me are, respectively, the electron charge
and mass, ε0 is the vacuum permittivity. If λ is the laser wavelength, then the absorption coefficient of the excited
material can be written as

αfca =
4π

λ
Im

[√
ε
]
. (3)

2.1 Free electrons plasma

The first step is to describe how radiation interacts with the electronic system of the target. In addition to the
classical linear ionization, described by a constant ionization coefficient σ0, when the intensity is sufficiently high
(1012–1013 W/cm2), the ionization coefficient becomes intensity dependent because of the simultaneous absorption of
multiple photons (MPI) by valence electrons. MPI becomes the dominant process, especially in dielectrics materials,
where typically a single photon in the visible spectrum has insufficient energy to promote a conduction band electron.
Once the valence band electrons have absorbed enough energy to overcome the material bandgap Eg, they can freely
absorb further energy from the electric field, eventually gaining enough kinetic energy to ionize by impact another
atom. This process, which has exponential growth, is called avalanche ionization (AI) [9]. In dense plasmas the recom-
bination proceeds mainly by three-body collisions with one electron acting as a third body: in semiconductors Auger
recombination is considered, while in dielectrics only SRH recombination through trap states is considered [10,11].
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Table 1. Model constants.

Aluminum oxide

Symbol Expression Unit

Eg 9 eV

σm 8 × 109 (with m = 6) cm−3/ps(cm2/TW)6

α 6 cm2/J

εg 3.098

τr 1 ps

Tc 4950 K

ρc 0.89 g/cm3

Silicon

Symbol Expression Unit

Eg 1.12 eV

σ0 1021 cm−1

σm 10 (with m = 2) cm/GW

δ 3.6 × 1010 exp(−1.5Eg/kbTe) s−1

εg 13.46 + ı0.028

C 3.8 × 10−31 cm6/s

τ0 6 × 10−12 s

τr 240 × 10−15(1 + (ne/ncr)
2) s

Tc 7925 K

ρc 0.76 g/cm3

The equation governing the electron plasma formation takes the form of a rate equation for the free electron density
ne:

∂ne

∂t
=

[(
σ0 + σm

Im−1

m

)
I

hν
+ δne

]
Na − ne

Na
− ne

τ0 + 1
Cn2

e

Semiconductors, (4a)

∂ne

∂t
=

[
σm

Im

m
+ αIne

]
Na − ne

Na
− ne

τr
Dielectrics, (4b)

where σm is the multi-photon (with m photons) ionization cross section; I is the laser intensity; Na is the number of
nonionized atoms; h is the Planck constant and ν is the laser frequency. The other parameters are listed in table 1. In
the present model we neglect the effect on the density rate due to tunnel ionization, by considering that its action is
relevant for a regime in pulse intensity higher than the one considered here.

2.2 Nonlinear propagation

Describing the beam as a plane wave in the proximity of the focal plane allows us to write a Lambert-Beer type
of absorption equation with the time-dependent absorption coefficient αfca which accounts for the absorption of the
electron gas.

∂I

∂z
= −

[
Na − ne

Na

(
σ0 + σmIm−1

)
+ αfca

]
I Semiconductors, (5a)

∂I

∂z
= −

[
Na − ne

Na
σmIm−1 + αfca

]
I Dielectrics. (5b)

2.3 Two-temperature model

During the process of femtosecond ablation, the electron-lattice relaxation time is typically in the order of several
picoseconds, while the actual laser pulse has a length of only some hundred femtoseconds, hence the material exposed
to femtosecond laser pulses gets excited into a high nonequilibrium state, and the classical Fourier heat conduction
equation is not applicable in such a highly nonequilibrium state. In order to solve this problem, a two-temperature
model (TTM) was proposed, whose basic mechanism is sketched in fig. 2. This continuous model describes the energy
transfer inside a metal with two coupled generalized heat conduction equations for the temperature of the electrons
Te and the lattice Tl:

∂

∂t
(ceTe) = ∇ · (ke∇Te) − G(Te − Tl) − Eg

∂ne

∂t
− ∂I

∂z
, (6)

∂

∂t
(clTl) = G(Te − Tl), (7)
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Fig. 2. Ablation models. Left: classical Fourier conduction; right: two-temperature model.

Fig. 3. Domain geometry.

where ce, cl are the heat capacity of the electron gas and the lattice, respectively; ke is the electron thermal diffusivity,
Eg is the energy gap of the material. G is the thermal coupling function, accounting for thermal conduction between
the two systems, which is given by G = Ce

τr
, in which Ce is the free-electron heat capacity and τr is the relaxation time

of electrons with the lattice [7].
The last term in the right-hand side of eq. (6), the spatial derivative of I along the propagation direction, is the

heat source in the equation, so that attenuation of the beam inside the material provides a positive heat source. Other
terms include thermal diffusion, conduction and energy loss in overcoming the bandgap. In this model, being the
energy transfer process is in the picoseconds timescale, we can neglect thermal diffusion in the lattice.

2.4 Geometry and boundary conditions

Given the axial symmetry of the problem it is convenient to use cylindrical coordinates (r, θ, z) so that calculations can
be restricted to two dimensions, neglecting variations of the dependent variables along the θ-direction1. Full 3D solution
is obtained revolving the solutions around the z-axis. Therefore the domain takes the simple form D = [0, R]× [0, Z],
where Z = 5μm is the total thickness of the cell and R = 150μm is the radius of the disc considered for the interaction.
Figure 3 contains a sketch of the geometry used in the numerical simulation, using the COMSOL suite, along with
the different domain (layer) thicknesses.

The laser intensity propagates along the z-axis, normally to the layer structure of the cell. Making use of propagation
matrices and given the aluminum oxide refractive index nd and the (complex) refractive index of silicon ns by

ns =
√

ε, (8)

1 This implies also that the divergence operator in (6) has to be calculated in cylindrical coordinates, namely: ∇ · A =
( ∂

∂r
+ 1

r
)Ar + ∂

∂z
Az.
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Fig. 4. Dielectric layer transmittance T as a function of the free electron density.

we obtain the expression for the transmission coefficient of the dielectric layer:

Γ =
τ3τ2 exp (−ı2πndL/λ0)

1 + ρ3ρ2 exp (−i2πnd2L/λ0)
, (9)

where L is the layer thickness, τ and ρ are the elementary Fresnel transmission and reflection coefficient at normal
incidence from the top sides of the interface indicated by the corresponding subscript. The transmittance of the
dielectric layer is then written as

T =
η0

Re[ηSi]
|Γ |2, (10)

where η0 and ηSi are the vacuum and silicon characteristic impedances, respectively. Figure 4 shows that the transmit-
tance of the dielectric layer at 800 nm is above 87% and approaches unity when the free electron density grows past
ncr (≈ 1.75 × 1021 cm−3 at 800 nm). The assumption of a lossless dielectric in the calculations is reasonable when the
pulse fluence is well below the dielectric damage threshold, as is the case in the dielectric delamination process. The
passivation layer then acts effectively as an AR coating, so that we can neglect reflection and assume that all the pulse
energy reaches the silicon. Equivalently, under these assumptions, there is no need to solve the model equations (4b),
(5b), (6), (7) in the dielectric layer. The boundary condition for the intensity at the dielectric-semiconductor interface
is then simply

I(−z1, r, t) = I(0, r, t) = I0 exp
(
− 2r2

r2
spot

)
exp

(

−4 ln 2
t2

τ2
pulse

)

, (11)

where I0 = 2 × 1012 W/cm2 is the peak intensity of the pulse on the beam axis, rspot = 50μm is the 1/e2 spot radius
and τpulse = 300 fs is the pulse FWHM duration. This beam parameters yield a pulse mean fluence of Fp ∼ 0.35 J/cm2.
Other boundary conditions needed are heat flux conditions at the z = z2 and z = 0 boundaries for the TTM
equations (6), (7). Given the timescale of the problem, only radiation loss through the z = 0 plane should be taken
into account, anyway the effect is negligible so that the insulation of boundary conditions gives the same results.

2.5 Numerical calculation

The set of eqs. (4)–(7), (11) has been solved with COMSOL, a finite element software, in the geometry described
above. A good meshing is achieved with a 30× 25 grid on the z-r plane, with smaller size near the target surface. The
3D elements are then obtained naturally revolving the two-dimensional mesh around the r = 0 axis. Results from the
simulation are presented in figs. 5 and 7. The scale of the z-axis has been expanded to better observe the solution
features. In the early stages of the pulse the unexcited material shows essentially linear absorption, with the pulse
intensity decaying exponentially inside the medium. When the electron density approaches the critical density, the
absorption grows almost exponentially with the electron density, leading to the deposition of the laser energy in the
first hundred of nanometers. This in turn confines the free electron growth in the same layer near the surface, reaching
a plasma state.

The electron temperature grows rapidly during the pulse reaching a peak temperature in the order of 7.9 eV about
300 fs after the pulse peak. The average ionization is around 2, which is consistent with the calculations made in [12]
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Fig. 5. Electron density and intensity profiles inside the target. Time is referred to the pulse peak. Note that different axis
scales are used for the transverse and longitudinal dimensions in order to visualize the superficial heating phenomena, that
would be unreadable with equal scales.

for the estimate of the average ion charge and electron temperature through the Saha equation. We can calculate the
number of particle in the Debye sphere as [13]

ND = 1.7 × 109
√

T 3
e /ne, (12)

which gives in our case ND < 1. This means that the electron plasma is highly nonideal, because under these conditions
the energy of Coulomb interactions is stronger than the thermal energy of the particles. In addition, it is noteworthy
to compare the calculated electron temperature with the Fermi degeneracy temperature for the corresponding electron
gas, given by [11]

εf =
h̄2

2me
(6π2ne)2/3 ≈ 7.8 eV. (13)

This comparison points out that electrons in our model behave as an interacting and degenerate Fermi gas [14]. Making
use of the electronic density of states in the conduction band in silicon

δc =
2m

3/2
e

2π2h̄3

√
E − Ef ,

we can estimate a quasi-Fermi level for electrons in the semiconductor of ∼ 1 eV. Because the quasi-Fermi level is close
to the conduction band, the full Fermi-Dirac (FD) distribution should be used, which is also evident comparing the
Boltzmann and FD distribution functions f [E] for the electron gas in fig. 6, clearly there are significant differences
right above the conduction band of silicon (1.12 eV).
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Fig. 6. Occupancy probability distribution for the electron gas in silicon: FD (blue line) and Boltzmann (purple line). The
x-axis origin is taken as the conduction band energy.

Even though one should take into account the modifications to the thermodynamic functions due to Coulomb
interactions in the gas, there are no analytical expressions for a nonideal Fermi gas and for the scope of this simplified
model we will neglect the contribution from collisions. The heat capacity of the electron gas Ce, for temperatures much
smaller than the Fermi temperature, can then be expressed as [14,15]

Ce

nekb
=

π2

2
kbTe

εf
. (14)

Using the heat capacity of an ideal gas in eq. (6), which is correct in the high fluence regime when the electron
temperature grows past the Fermi temperature, would result in an overestimate for the heat capacity during the
initial electron heating, resulting in a lower electron temperature at the end of the pulse. However, the effect is not
critical because lower heat capacity leads to faster electron heating which in turn, because of the linear dependence for
low temperatures of the heat capacity to the temperature, makes the heat capacity quickly approach the classical limit.
To address the problem of which statistic has to be used, we first calculate the solutions for the ideal gas statistics and
make use of the fugacity R of the electron gas. Being λth = h/(2πmekbTe)1/2 the electron thermal wavelength and
v = 3

√
1/ne the average interparticle distance, the fugacity can be written as R = neλ

3
th = (λth/v)3 � 1. Carrying

the calculation of the fugacity over the solutions of the problem shows that, while being R = 10−4 in any point of the
domain during the simulation, R is not small enough to allow the use of the Fermi statistics in the limit R → 0. This
fact is also confirmed by the fact that the electron temperature is close to the Fermi degeneracy temperature. In this
intermediate regime we make use of the virial expansion to calculate the departure of the gas from classical due to
quantum effects [14]:

Ce �
3
2

[

1 − 0.0884
(

λ3
th

v

)
+ 0.0066

(
λ3

th

v

)2

+ . . .

]

. (15)

Under the conditions of the problem the deviation from the classical analysis is negligible because the expression
given in (15) gives a correction to the electron heat capacity of less than one part per million, so that, under the
simplifying assumptions already made, Boltzmann statistics suffices for our treatment. It takes about 4 ps for the
electrons to release most part of their energy to the lattice and after 10 ps electrons and ions reach thermal equilibrium
(figs. 7(d), 7(b)). It is interesting to notice that the peak temperature of the ions is reached inside the material rather
than on the surface. This is because the electron-ion scattering process starts to be slowed down by Coulomb screening
over critical electron densities [16], so that the heat exchange is more efficient in regions far from the surface, where
the ionization degree is lower.

2.6 Results discussion

As seen already in previous works [17, 18] in molecular dynamics (MD) simulations, what characterizes the ultrafast
interaction is the initial isochoric heating of the material up to a supercritical fluid, which then relaxates following
different paths in the phase diagram while the material expands quasi-adiabatically. Each path distinguishes among
the different mechanisms involved in the ablation process and each one is associated with a different energy density
absorbed. The material is heated to a temperature close to the critical temperature of silicon and is then pushed into
the metastable region between the spinodal and binodal lines, causing homogeneous nucleation of gas bubbles in the
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Fig. 7. Electron and lattice temperature distributions inside the target. Time is referred to the pulse peak.

superheated liquid, a mechanism which goes under the name of phase explosion. After the initial constant volume
heating a superheated and highly pressurized liquid layer forms near the surface. The time for electrons to thermally
diffuse out of the interaction volume is considerably longer than the time it takes for electrons to transfer their energy
to ions, so that a strong compressive shock wave emerges, driven by the strong pressure discontinuity. A rough estimate
of the initial pressure can be made with the ideal gas equation of state and Boltzmann distribution. A particle density
of 3×1022 cm−3 with a temperature of 92000K yield ∼ 36GPa. This pressure is confrontable with the Young modulus
of most solids (150GPa for silicon and 353GPa for aluminum oxide).

The resulting delamination follows as a result of spallation: the shock front, after transmission into the oxide layer,
is reflected from the free surface, transforming into a tensile wave which tends to accelerate the layer into vacuum,
causing detachment when the resulting stress exceeds the interface strength [19].

This effect is relevant in the silicon solar cell manufacturing as the control of the ablation is crucial in the control
of the opening of contacts [3]. Moreover, the advent of high-average-power ytterbium femtosecond mode-locking lasers
have provided the tool for the exploitation of the ablation mechanism described in this model with processed areas
that are relevant for industrial processes.

The comparison of the experiments in this novel process regime with the theoretical and modeling predictions as
these here proposed is under way in a number of Laboratories including ours.

This work has been funded by the Polo Fotovoltaico Veneto (SMUPR n. 4148 “Polo di ricerca nel settore Fotovoltaico” POR
CRO PARTE FESR 2007-2013 Azione 1.1.1 a regia Regionale), and carried out at the Laser4PV Labs of Polo Fotovoltaico
Veneto, Università di Padova.
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