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Abstract. The simplest model for itinerant ferromagnetism, the Stoner model, has so far eluded experimen-
tal observation in repulsive ultracold fermions due to rapid three-body recombination at large scattering
lengths. Here we show that a ferromagnetic phase can be stabilised by imposing a moderate optical lattice.
The reduced kinetic energy drop upon formation of a polarized phase in an optical lattice extends the fer-
romagnetic phase to smaller scattering lengths where three-body recombination is small enough to permit
experimental detection of the phase. We also show, using time dependent density functional theory, that
in such a setup ferromagnetic domains emerge rapidly from a paramagnetic initial state.

The ground-state of a repulsive gas of fermions with con-
tact interaction was first predicted by Stoner [1] in 1933 to
be ferromagnetic and a precise value for the critical inter-
action strength in a homogeneous system was recently ob-
tained with diffusion Monte Carlo simulations [2–4]. While
ultracold fermionic gases should provide a controlled en-
vironment to study this phenomenon, the instability of a
strongly repulsive gas towards molecule formation has so
far prevented experimental realization of this phase. Re-
pulsive fermions on the positive side of the Feshbach reso-
nance live on the meta-stable repulsive branch [5]. When
three atoms, one with the opposite spin of the other two,
come close to each other two atoms with opposite spin
will form bosonic molecules and the other one carries the
binding energy away. The rate of such process increases
rapidly with scattering length. The lifetime of the gas is
therefore largely governed by the interaction strength and
the spatial overlap between the two spin species.

A recent experiment [6] presented evidence for a possi-
ble ferromagnetic state formed after rapid increase of the
scattering length. The nature of this phase has, however,
been questioned [7–9] as the peaks in kinetic energy, cloud
size and loss rate observed in reference [6] are only indi-
rect evidence for ferromagnetic domains [7], and it has
been shown that molecule formation is dominant at large
interaction strengths [8,9]. Several papers have proposed
to reduce the recombination rate by using a polar molec-
ular gas with dipole interactions and positive scattering
range [10], narrower Feshbach resonances [8,9,11–13] and
fermions with unequal mass [14,15]. Although these ap-
proaches might prove promising in experiments, as has
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recently been shown in reference [16], they all change the
microscopic physics of the Stoner model.

Here we suggest new strategies which achieve the same
goal of stabilising the ferromagnetic phase, yet preserve
the microscopic physics and thus pave the way towards ex-
perimental realization of Stoner ferromagnetism. Firstly,
the lifetime of the system can be increased by reducing
the overlap volume between polarized domains with dif-
ferent spins. This can be achieved using elongated traps
with larger aspect ratios, but turns out to be insufficient
to stabilise the phase by itself. A more effective way is to
reduce the critical scattering length, at which ferromag-
netism sets in, by imposing a shallow optical lattice [2,17].
The ferromagnetic transition is determined by a competi-
tion between the loss of kinetic energy and gain of inter-
action energy. Since the optical lattice reduces the kinetic
energy scale, the ferromagnetic state is stabilised. A simi-
lar effect is found in flat band ferromagnetism [18–20]. On
the other hand, ferromagnetism is not particularly favor-
able in an ordinary single band Hubbard model with finite
interaction strength [21]. Reference [22] studied Hubbard
model with infinite repulsive interaction, and discovered
ferromagnetism in connection to the Nagaoka state [23].
However, in practice, the single band approximation of the
Hubbard model may not hold in such strong interaction
limit. In the shallow lattice case, an appropriate descrip-
tion is the multi band Hubbard model, where a substantial
ferromagnetic region was discovered in reference [24].

To obtain quantitative results for the phase dia-
grams we use Kohn-Sham density functional theory [25,26]
here the exchange-correlation energy is treated within
a local spin density approximation (LSDA) which has
been widely used for materials simulations and more
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Fig. 1. Phase diagram of the homogeneous repulsive Fermi gas
as a function of temperature T/TF and interaction strength
kF as. The white dashed line indicates the paramagnet-
ferromagnetic phase transition and the colour scale the po-
larization P = (n↑ − n↓)/(n↑ + n↓).

recently for ultracold atomic gases [17,27–29]. The LSDA
exchange-correlation functional is obtained by solving a
uniform system at zero temperature with diffusion Monte-
Carlo [3,4], where interactions between fermionic atoms
with opposite spin are modelled by a hard-sphere poten-
tial with scattering length as. We compute the spin den-
sity distribution and the three-body loss rate using Kohn-
Sham orbitals.

Before discussing our proposal to stabilise the ferro-
magnetic phase we investigate whether thermal fluctua-
tions, which can significantly affect of the stability of the
ferromagnetic phase [30], might be responsible for the ab-
sence of a stable ferromagnetic phase in experiments. To
quantify the effect of non-zero temperature we employ
finite-temperature density functional theory with a zero
temperature exchange-correlation correction [31–34]. The
resulting phase diagram, presented in Figure 1, is in gen-
eral agreement with previous results [35,36]. We observe
almost full polarization in the currently experimentally ac-
cessible temperature regime T ∼ 0.25TF [8,13] and ther-
mal fluctuations are thus not the dominant mechanism
destabilising the ferromagnetic phase.

An equally important question is that of the time scale
over which ferromagnetic domains form from an initially
paramagnetic state [37], which should be within the ca-
pabilities of current experimental setups for the obser-
vation of ferromagnetic domains to remain plausible. We
address this issue within the time-dependent Kohn-Sham
formalism [38] ignoring the effect of three-body recom-
bination. The system is evolved in pancake shaped har-
monic confinement in the presence of thermal noise after
a quench of the interaction strength k0

Fas to 1.2. Already
after t ∼ 250tF ferromagnetic domains with a feature
size ∼10k−1

F form (Fig. 2), which is within the resolution

Fig. 2. Total magnetisation 〈|m|〉 in pancake shaped har-
monic confinement for N = 440. Starting from a paramag-
netic phase the system evolves in the presence of thermal
noise for t ∈ [0; 250]tF . Topology of ferromagnetic domains at
t = {50, 150, 250}tF is shown in the insets. As the gas remains
unpolarised away from the center, the maximum magnetisation
is ∼0.8.

currently achievable in the lab. The ferromagnetic phase
is also significantly more stable with a total recombination
rate reduced by a factor ∼3 relative to the initial param-
agnetic gas. In the experiment [8], more than half of the
particles remain in the meta-stable repulsive branch after
250tF . However, ferromagnetic domains were not observed
indicating that three-body recombination has more signif-
icant effects beyond reducing the fraction of meta-stable
fermions in the system.

We thus focus on three-body recombination and deter-
mine its effect on the stability of the ferromagnetic phase.
The loss rate Γ = −∂tN/N (N is the total number of
particles in the system) is inversely proportional to the
lifetime of the system and can be computed as [39]

Γ ∼ a3
s

∑

σ

∫
dr

∫

|r′−r|<as

dr′εF (r)gσ̄σσ(r, r, r′) (1)

where εF (r) = �
2(3π2(n↑ + n↓))2/3/2m is the lo-

cal Fermi energy, nσ(r) is the local density of
each spin, m the atom mass and gσ̄σσ(r, r, r′) =
〈ψ̂†

σ̄(r)ψ̂†
σ(r)ψ̂†

σ(r′)ψ̂σ(r′)ψ̂σ(r)ψ̂σ̄(r)〉 is the three-body
correlation function which gives the probability of find-
ing three particles with spin σ̄σσ [40] at locations rrr′
respectively. Here σ̄ refers to the opposite spin of σ.
In this way the total loss rate is in units of energy
and the microscopic contribution, represented by the pre-
factor a3

s together with the integration over r′, is de-
coupled from the many-body background given by the
correlation function. The three-particle correlation func-
tion is commonly [35,41,42] treated phenomenologically
as g0

σ̄σσ(r, r, r′) = nσ̄(r)nσ(r)nσ(r′), where the density
is assumed to be constant within the integral over r′.
This form disregards quantum mechanical corrections
due to exchange effects and violates the Pauli principle.
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(a) Total density

(b) Magnetisation

(c) Recombination rate

Fig. 3. Total density n↑ + n↓, magnetisation n↑ − n↓ and loss
rate Γ in harmonic confinement for the aspect ratio λ = 5,
k0

F as ∼ 1.4 and N↑ = N↓ = 969. The z and r axes are along
the horizontal and vertical directions, respectively.

Within the Kohn-Sham formalism a more accurate repre-
sentation is

gσ̄σσ(r, r, r′) = g0
σ̄σσ(r, r, r′) − nσ̄(r)|ρσ(r, r′)|2 (2)

where ρσ(r, r′) is the one-body density matrix. The Pauli
principle is restored in this formulation as gσ̄σσ(r, r, r) ≡
0, thus leading to a better estimate of three-body losses.

As molecule formation in the gas is a three-body pro-
cess and requires both species of fermions to be close to
each other, the recombination rate (1) is determined by
the total volume where the two spin species are mixed.
In a polarised system this amounts to the overlap be-
tween ferromagnetic domains at their boundaries, whose
structure strongly depends on the external confining po-
tential. To further investigate this effect, we impose a
cigar shaped harmonic potential, which has been used
in a number of recent experiments [8,13]. With cylin-
drical symmetry around the z-axis the potential is in
the form VHO(r, z) = 1/2(ω2

rr
2 + ωzz

2) with aspect ra-
tio λ = ωr/ωz. We will consider the spin-balanced case
N↑ = N↓ = N/2 and normalise the loss rate Γ by the
critical recombination rate Γc, above which the system is
unstable. This value can be estimated from the experimen-
tal observation of an equilibrium density distribution up
to kFas ∼ 0.4 for 6Li atoms in an optical dipole trap [13].

With equal number of spin-up and down particles, the
ferromagnetic ground state exhibits a domain wall across
the middle of the trap, as shown in Figure 3b. Due to re-
pulsion between the two polarized domains there is a drop
in total density along this region with a width ∼0.5k−1

F
(see Fig. 3a), which is, however, below the resolution of
current experiments [8]. As shown in Figure 3c, particle
loss occurs predominantly at the domain wall in the center
of the trap and in the low-density halo on the surface of

Fig. 4. Normalised recombination rate Γ/Γc in harmonic con-
finement for aspect ratios λ = {2, 5, 10, 14} and N↑ = N↓ = 560
at different interaction strengths. Inset: dependence of Γ/Γc on
the aspect ratio for k0

F as ∼ 1.6. From simulations of different
system sizes we checked that the results are not sensitive to
the number of atoms in the system.

the clouds where the gas remains unpolarised due to low
densities.

One can thus expect that larger aspect ratios may re-
duce losses due to a smaller area of the domain wall. To
investigate this quantitatively we present the results of
our calculations for the recombination rate in Figure 4 as
a function of interaction strength kFaa. Starting from a
non-interacting gas in the paramagnetic ground state, the
recombination rate increases until phase separation due
to ferromagnetism sets in and a maximum is reached at
kFas ∼ 1.1, after which total losses are again reduced. A
similar dependence of the loss rate on scattering length
was observed in the experiment [6] and theoretical stud-
ies [42,43]. As the trap is compressed around the z-axis
at constant volume ω̄ = (ω2

rωz)1/3 and system size N (see
inset of Fig. 4), the aspect ratio increases and the recombi-
nation rate is indeed significantly reduced. However, with
a six times lower recombination rate at λ = 14 compared
to λ = 2, the loss rate is still above the critical value Γc.

We now turn to the most promising way of stabil-
ising the ferromagnetic phase, by reducing the critical
scattering length of the ferromagnetic phase transition.
This can be achieved by imposing a shallow optical lat-
tice [17], which reduces the kinetic energy loss at the phase
transition and thus favors the ferromagnetic state. Fig-
ure 5 shows the phase diagram at quarter filling (n̄ =
0.5) in a shallow 3D cubic optical lattice VOL(r) =
V0

∑3
i=1 sin2(πri/d), where V0 is in units of recoil energy

ER = �
2π2

2md2 and d is the lattice constant. At quarter filling
n̄ = 0.5, the maximum tolerable kF as ∼ 0.4 corresponds
to as = 0.16d, which is nearly half the critical scattering
length predicted by diffusion Monte Carlo [3,4].

We see that a ferromagnetic phase exists at this scat-
tering length for a lattice depth of about V0 ∼ 2.5ER.
However, the loss rate is likely significantly affected
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Fig. 5. Contours of constant normalised loss rate Γ/Γc at quar-
ter filling n̄ = 0.5 in an optical lattice. In the shaded region
Γ > Γc. Red (yellow) region denotes the fully (partially) polar-
ized ferromagnetic phase. Inset: normalised loss rates Γ/Γc for
as = {0.12, 0.14, 0.16} at different lattice depths. The dotted
line is Γc. From simulations at different fillings bellow n̄ = 1.0,
we checked that the physics remains qualitatively the same.

by the presence of a periodic potential. To address this
issue we calculate the recombination rate of the param-
agnetic state in an optical lattice by integrating over the
unit cell equation (1).

The loss rate initially grows as the lattice is ramped
up since the density increases at the center of the unit cell
(inset of Fig. 5). In very deep lattices the loss rate is re-
duced when one approaches the regime where the physics
is well described by the single band Hubbard model and
triple occupation of a lattice site is reduced. In Figure 5
we show contour lines of constant loss rate Γ and indicate
by grey shading the regime where we expect three body
losses to be above the critical experimental value. We find
that despite the increased three-body losses in a shallow
lattice, the ferromagnetic phase is stable in a wide region
of the phase diagram. Our calculations have not taken into
account the quantum Zeno effect [44] which will further
suppress three body recombination.

In summary, we have shown that although larger as-
pect ratios in harmonic confinement can significantly re-
duce the total recombination rate, the gas remains unsta-
ble. However, in an optical lattice the ferromagnetic phase
extends down to small enough scattering lengths where
three-body recombination is below the critical value. Ex-
perimental verification of our results will be solid confir-
mation of the Stoner model of itinerant ferromagnetism.
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