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Abstract. The excitation of solitons and discrete breathers (pinned or otherwise, also known as intrinsic
localized modes, DB/ILM) in a one-dimensional lattice, also denoted as a chain, is considered when both
on-site and inter-site vibrations, coupled together, are governed by the empirical Morse interaction. We
focus attention on the transformation of the former into the latter as the relative strength of the on-site
potential to that of the inter-site potential is increased.

1 Introduction

It was a surprising finding that spontaneously localized
excitations, pinned or otherwise, may appear in a per-
fect crystal lattice [1–10]. They were denoted as discrete
breathers, a.k.a. intrinsic localized modes (DB/ILM in
what follows) and considered as genuinely due to the
discrete character of the lattice which provides disper-
sion. The latter balanced by nonlinearity provides the
support for the survival of such localized excitations.
Breathers, nonlinear localized modes with internal time
periodic structure, had earlier being described as solutions
of the sine-Gordon and the nonlinear Schrödinger equa-
tions [11]. Other nonlinear localized excitations denoted
as solitons are also known for perfect (anharmonic) lat-
tices, like the Toda lattice, and continuum equations like
the Boussinesq-Korteweg-de Vries equation whose soliton
solutions are also long wave excitations in the discrete ap-
proximation for the numerical exploration of the equations
in the continuum [11–15]. In the latter there is also an
appropriate balance between dispersion (velocity depends
on color/wavelength) and nonlinearity (velocity depends
on amplitude) leading to the survival of the correspond-
ing solitons. That localization of excitations is possible in
crystals is to be expected when defects or disorder occur
along the lattice structure (Anderson localization and the
like [16,17]).

In general, there are on-site and inter-site interac-
tions in a crystal lattice (have in mind the corresponding
Einstein and Debye primitive models of a solid). Most of

a e-mail: mgvelarde@pluri.ucm.es

the mathematical proofs of existence of DB/ILM start in
the anti-continuum limit which is a caricature of a crys-
tal lattice when the on-site dynamics largely overwhelms
the inter-site dynamics [9,18–20]. If one thinks of units
with strong on-site dynamics coupled to the others, say
the two nearest-neighbors, by weak inter-site potentials
one may guess that one among them could at a certain
moment benefit from the others thus attaining a spon-
taneous growth that eventually could persist, with cor-
responding slaving of the others who may also benefit, if
circumstances are appropriate. This is a typical case of op-
portunism, cooperative or otherwise (for an in-depth and
extensive study of this concept and related matters see
Ref. [21]).

Here we shall concentrate on a one-dimensional model
where both on-site and inter-site vibrations are governed
by empirical Morse interactions. Our aim is to uncover
possibilities offered by varying their relative significance.
We shall show that both solitons and DB/ILM (pinned
or otherwise) are possible. Furthermore, we shall show
how one mode appears and eventually transforms into the
other as we vary appropriate parameters (a unified math-
ematical description of solitons and breathers is provided
in Ref. [20]). We have in mind that discreteness provides
bounds and gaps to the spectrum of linear oscillations
whereas nonlinearity makes the amplitude of oscillations
frequency-dependent. We also have in mind that the inter-
site Morse potential favors the excitation of soliton-like
modes. It also permits the onset of (pinned) DBs albeit
with some constraints, like being assisted by on-site os-
cillations, due to its “soft” character (frequency of small
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Fig. 1. Brillouin dispersion relation (half) plots (with appropriate dimensionless units) for a lattice of identical oscillators.
Extreme left panel: chain of point particles, ω0 = 0 (no on-site potential; gapless); central panel: general case, ω0 ∼ ωb (here,
in particular, ωb = 2ω0; non-zero gap); and extreme right panel: very weak inter-site bond, ωb � ω0 (here ωb = 0.2ω0; non-zero
gap). In each case the region between the solid (dispersion, red) line and the upper dotted (blue) line is the so-called “phonon”
band whose size drastically depends on the strength of the on-site potential as we can see by going from the left to the right
panels. The extreme right panel shows quite a narrow phonon band indeed.

amplitude oscillations around minimum decreases when
amplitude increases; its well width goes outside the har-
monic potential or, to put it differently, its spring stiffness
decreases with the widening of the inter-site separation).
DB/ILM could be mobile (subsonic or otherwise), pinned,
or even impossible depending indeed on parameter val-
ues, whereas solitons would generally be supersonically
moving [7–10]. Coupling the inter-site Morse potential to
the on-site Morse potential offers a variety of possibilities
as the latter favors the onset of DB (for the case of on-
site harmonic oscillations coupled to inter-site harmonic
oscillations see [22]). Note that DB/ILM are always possi-
ble with a ‘hard’ potential (frequency of small amplitude
oscillations around the minimum increases with increas-
ing amplitude or spring stiffness increases with the widen-
ing of the separation; otherwise in soft/hard the force is
smaller/greater than the linear force alone). Note also that
when two coupled harmonic oscillators are resonant, any
amount of energy initially given to one of them alternates
periodically between them with a frequency proportional
to the strength of their coupling. Then in a lattice/chain
with coupled identical harmonic oscillators there is energy
propagation. In order for the energy to remain localized,
resonance has to be broken and this is feasible when there
are defects or disorder along the lattice. If, however, the
oscillators are nonlinear as their frequencies depend on
amplitude when two are coupled and energy is given to
one of them in a way that its frequency is equal to the har-
monic approximation of the other, resonance is generally
broken after some energy transfer because the frequencies
change and then the transfer stops. However, it was shown
that resonance between two weakly coupled anharmonic
oscillators may persist under particular conditions [18,19].

In Section 2 we pose the mathematical problem in the
form of nonlinear evolution equations. Their solutions are
discussed in Section 3 for two extreme opposite limiting
cases of parameter values. Section 4 deals with the same
problem in further generality. In Section 5 we sketch the
role of transverse motions to the original one-dimensional
lattice geometry. Finally Section 6 is devoted to a sum-
mary of results.

2 Lattice dynamics, dispersion relations
and evolution equations

Before addressing the dynamics with Morse potentials it
seems worth recalling results from the linear case. The evo-
lution of small amplitude vibrations is generally described
by a system of linear differential equations

d2rn

dt2
= −ω2

0rn + ω2
b (rn+1 − 2rn + rn−1) , (1)

where rn denotes the deviation from the equilibrium state
of the element/unit/particle “n” and ω0 and ωb corre-
spond, respectively, to the on-site and inter-site oscilla-
tions. Equation (1) accounts for both types of oscilla-
tions due to the symmetry of the parabolic potentials.
Solutions are linear combinations of normal modes rn ∼
exp(i(ωt − knσ)) with frequency ω and wave number k
whose dispersion relation yields explicitly:

ω2 = ω2
0 + 4ω2

b sin2 (kσ/2) , (2)

where σ is the equilibtrium inter-site distance. Figure 1 il-
lustrates the correpponding (half) Brillouin plots. In gen-
eral, there are two critical frequencies in a dispersive dia-
gram of a chain of interacting oscillators: ωcr1 = ω0 and
ωcr2 =

√
ω2

0 + 4ω2
b . The region ωcr1 < ω < ωcr2, with

Imk(ω) = 0, and Rek(ω) �= 0, is the “phonon” band
in quantum language. Solutions corresponding to this
band are travelling waves with constant amplitude. For
ω < ωcr1 and ω > ωcr2 we have Imk(ω) �= 0, Rek(ω) = 0
and we are outside, below or above, the phonon band,
respectively.

Looking at Figure 1, we can guess that, provided ade-
quate nonlinearity is added to the dynamics, lattice soli-
tons are expected inside the phonon band when there is
moderate wave dispersion (from around the center to the
upper right corner of the dispersion line). DB/ILM can
be searched for frequencies above ωcr2 and below ωcr1 (as
long as the harmonics do not enter the phonon band).
Inside the phonon band they are not possible since any
resonance or harmonics with the extended phonons will
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(a) (b)

Fig. 2. One-dimentional lattice of oscillators with (a) longitudinal and (b) transverse motions of units.

radiate the DB/ILM away. In view of the above after in-
troducing the Morse potentials for both inter-site and on-
site dynamics we have the following nonlinear evolution
equations for identical particles of mass m

m
d2rn

dt2
+

[ (
∂U inter-site

M

∂r

)∣
∣
∣∣
r=|rn+1−rn|

−
(

∂U inter-site
M

∂r

)∣
∣
∣
∣
r=|rn−rn−1|

]

+
∂

∂ r
Uon-site

M |r=rn = 0 (3)

with
rn = xn − xn0 = xn − nσ

and
UM = D

(
e−2br − 2e−br

)
,

where D and b characterize, respectively, the potential
well depth (or dissociation energy level) and its stiffness;
indexes “inter-site” and “on-site” refer to inter-site and
on-site potentials, respectively. To simplify, thus limit-
ing our study to a first approximation to the problem,
we take σon-site = σinter-site. For universality in the ar-
gument and convenience in our discussion of coopera-
tion and/or competition between the on-site and inter-site
Morse potentials we rescale the problem using the follow-
ing relationships: τ = ωinter-site

M t, ηb = bon-site/binter-site
(ratio of widths of potential wells/stiffnesses), and ηD =
Don-site/Dinter-site (ratio of depths of potential wells).
Also, a natural unity of velocity vinter-site = (σωM )inter-site
appears which corresponds to the sound velocity vsound in
a lattice without on-site potential (Fig. 1, left panel). This
choice of units reflects our intention of illustrating the
passage from (supersonic) moving solitons to DB/ILM,
pinned or otherwise, along the same lattice as we vary the
above defined ratios. In no case this represents a signifi-
cant limitation of the study.

Thus in dimensionless variables the evolution equa-
tion (3) become

d2qn

dt2
=

[
1 − e(qn−qn+1)

]
e(qn−qn+1)

−
[
1 − e(qn−1−qn)

]
e(qn−1−qn)

− ηbηD

[
1 − e−ηbqn

]
e−ηbqn (4)

with qn = binter-sitern and t → tωM , where ωM accounts
for the small amplitude oscillations in the inter-site Morse
potential well (ω2

M = 2(Db2)inter-site/m).
Note that equations (3) and (4) refer to the case of a

chain with longitudinal motion of particles only, as the op-
posite directions of propagation of wave excitations in such
chain are not equivalent due to the asymmetry imposed by
the Morse potential (Fig. 2a) in contrast to a chain with
transverse motion of units (Fig. 2b) as e.g. in the Peyrard-
Bishop (PB) model for DNA [11,23,24]. In such a case
though the “longitudinal” distance between units (pro-
jections of deviations onto the original one-dimensional
equilibrium lattice geometry) does not change, there are
transverse deviations of the units (Fig. 2b) yn0 = 0 and
hence rn = yn − yn0 = yn. Then the interaction of near-
est neighbors depends on the relative difference of such
transverse deviations.

Because both elements, (n − 1)th and (n + 1)th, im-
part motion on their nearest neighbor nth element equa-
tions (3) and (4) are equivalently written as follows:

m
d2rn

dt2
+

[(
∂U inter-site

M

∂r

)
|r=|rn−rn+1|

+
(

∂U inter-site
M

∂r

)
|r=|rn−rn−1|

]

+
∂

∂ r
Uon-site

M |r=rn = 0,

(3a)

d2qn

dt2
= −

[
1 − e(qn+1−qn)

]
e(qn+1−qn)

−
[
1 − e(qn−1−qn)

]
e(qn−1−qn)

− ηbηD

[
1 − e−ηbqn

]
e−ηbqn . (4a)

3 Solitons and DB/ILM as extreme opposite
limiting cases

Let us first consider the dynamics of the chain with solely
longitudinal motion of particles (“longitudinal” lattice).
In general equations (4) are not solved analytically and
numerical simulation should be performed to have an-
swers about the evolution of the lattice. However there are
two extreme opposite limiting cases when it is possible to
have approximate analytical descriptions of the evolution
of nonlinear localized excitations: the soliton in a Morse

http://www.epj.org


Page 4 of 10 Eur. Phys. J. B (2016) 89: 233

 0
 0.02
 0.04
 0.06
 0.08

 0
 40

 80
 120

 160
 0

 40
 80

 120
 160

n

t

v
v

n

n

 0

 0.02

 0.04

 0.06

 0.08

 0  40  80  120  160 n

vn

 0

 0.02

 0.04

 0.06

 0.08

 0  40  80  120  160 n

vn

 0

 0.02

 0.04

 0.06

 0.08

 0  40  80  120  160 n

vn

Fig. 3. Morse lattice, with periodic boundary conditions, without on-site potential (N = 200, κ = 0.5, t = 0–200). A low
energetic lattice soliton (kinetic energy of particles are lower than D), embracing ten lattice units is introduced as initial
condition (5). Left to right: evolution of velocity distribution vn(t) for the time interval t = 0–200, with snapshots at t = 10, 20
and 50. The soliton velocity is vsol = 1.05 in units of vinter-site = (σωM)inter-site which is the sound velocity vsound here (that is
the linear velocity of the dynamics in the harmonic approximation to the Morse potential). Recall that in a soliton the velocity
depends on amplitude/energy.

chain without on-site potential (ηD = 0) and the low-
frequency pinned DB/ILM. In all computations presented
in this work we use periodic boundary conditions.

Case 1: soliton in a Morse chain without on-site
potential (ηD = 0)

With the Morse potential, at not very high energy (value
relative to D) the lattice excitations are approximated
within ten percent by the exact analytically known Toda
solitons [14,25–27]. Thus, we set as an initial condition at
t = 0

qn = qn+1 +
1
3

ln
(

1 +
sh2κ

ch2 (κ (n − ncentr) − sh κt)

)

with
vn =

dqn

dt
, (5)

where κ is the inverse width at half level of the excitation
and ncentr is the location of its maximum height. Figure 3
illustrates its time and space evolution using equation (4).

Case 2: low-frequency pinned DB/ILM

In the simplest case when the on-site interaction largely
overwhelms the inter-site force it may be assumed that
a highly-energetic oscillation with a frequency apprecia-
bly lower than the low critical frequency (i.e., in the gap
below the phonon band) is localized at a single site, for
illustration here n = n0. It is quite well captured by the
solution of the Morse oscillator equation

d2qn0

dt2
= −ηbηD

[
1 − e−ηbqn0

]
e−ηbqn0 , (6)

which follows from equation (4) for large enough values of
ηb and ηD thus leading to

d2Q

dτ̃2
= e−2Q − e−Q (7)

with Q = ηbqn0 and τ̃ = ηb
√

ηDt. The exact analyt-
ical solution of (7) for initial conditions Q = 0 and

ṽ = dQ/dτ̃ = ṽ0 < 1 at τ̃ = 0 is:

Q = ln

⎡

⎣
1 + ṽ0 sin

(√
1 − ṽ2

0 τ̃ − arcsin ṽ0

)

1 − ṽ2
0

⎤

⎦ , (8)

ṽ =
ṽ0

√
1 − ṽ2

0 cos
(√

1 − ṽ2
0 τ̃ − arcsin ṽ0

)

1 + ṽ0 sin
(√

1 − ṽ2
0 − arcsin ṽ0

) . (9)

Figure 4 graphically displays the result found which cor-
responds to the anti-continuum limit as the excitation of
the Morse oscillators is akin to a weak coupling between
them. One can observe a deviation from harmonic oscilla-
tions of the velocity of particles with (dimensionless) fre-
quency ω̃ =

√
1 − ṽ2

0 localized in a narrow region of the
lattice. Then it appears that the expressions (8) and (9)
describe quite accurately the behavior of the central site
of a pinned breather for n0 = 50, v0 < 1 using equa-
tion (4). The DB/ILM embraces a few sites as illustrated
in Figure 5.

Our aim now is to visualize the transformation of
soliton-like waves (Fig. 3) to DB/ILM breather-like excita-
tions (Fig. 5) when varying the values of the parameters ηb

and ηD.

4 Solitons and DB/ILM as variations
on a theme

Generally, solitons and DB/ILM are excited when using
appropriate initial conditions alien one to the other. How-
ever to study different kinds of excitations including in-
termediate cases between solitons and pinned DB/ILM in
a wide range of parameter values it seems reasonable to
perturb the lattice using a kind of common initial condi-
tion though we are aware indeed of their different struc-
ture. The excitation of narrow highly-energetic structures,
both soliton-like and breather-like, is made possible by us-
ing an initial perturbation in the form of a strong enough
kick to a single unit (vn = qn = 0 for all n except one
particle for which vn0 = v0 �= 0). Computer simulations
show that localized waves accompanied by low energetic
phonons are excited in a wide range of parameter values.
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Fig. 4. Anharmonic oscillations of a Morse-oscillator: Q (left) and ṽ (right) vs. τ̃ with ṽ0 = 0.9.
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Fig. 5. Morse chain (N = 100). Low-frequency pinned DB/ILM when the on-site interaction largely overwhelms the inter-site
force (time interval t = 0–20). Left to right: time evolution of the velocity distribution vn(t) (in units of vinter-site here) for
t = 20, then snapshots at t = 0.1, 1.2 and 2. Recall that for a pinned DB/ILM the frequency depends on energy.
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Fig. 6. Morse lattice (N = 200) without on-site potential (ηb = ηD = 0). Highly-energetic soliton (kinetic energy of particles
is D or greater) excited by an initial kick to a unit, here n = 50 with v0 = 1. The soliton velocity is 1.3 in units of the sound
velocity (as it follows from simulation data: starting at site 70 the excitation reaches site 135 at time 50). Left panel: evolution
of particles velocity distribution for time interval t = 0–50; right panel: particles velocity distribution at t = 50 (for comparison
with Fig. 3, extreme left panel; there is a difference – the phonon “tail” in Fig. 6 due to larger difference in initial conditions
from the real form of the soliton relative to Fig. 3 where the initial conditions fit better the real form of the soliton solution;
note that the tail, as it is linear, hence sonic, lags behind the supersonic solitonic peak).

Figure 6 depicts a supersonic soliton formed very quickly
from an initial delta function-like space distribution by
kicking a single particle (on-site potential off). Figure 6
differs from Figure 3 by the different phonon background
lagging behind the solitonic peak. But phonons do not
significantly affect the evolution of highly-energetic local-
ized nonlinear waves of different kinds and they may be
neglected when analyzing the evolution of those waves.
Besides, this phonon background may be erased in order
to use the cleaned residual excitation as a new initial con-
dition for continuing new computer simulations leading to
the ultimate result illustrated in Figure 7. Clearly the lat-
ter differs from Figure 3 (extreme left panel) in much less
degree than Figure 6. Such “erasing” procedure may be re-
peated to optimize computation time and the refinement
of the ultimate form of the localized excitation.

To visualize the transformation of localized excitations
in the parametric plane ηb − ηD we performed a series of
computer simulations for different values of ηb and ηD. The
results are displayed in Figures 8 and 9 for constant ηD =
0.4 and varying ηd in the range between 0.5 and 8 (Fig. 8)
and constant ηb = 2 and varying ηD in the range between
0.1 and 2 (Fig. 9). We should note that the asymmetry of
the Morse potential to compressions-expansions (Fig. 2a)
leads to the asymmetry in the moving solitons left-to-right
and right-to-left. With a potential having symmetry the
two directions of motion are identical. Here we consider
the case when the excitation of mobile DB/ILM is with
initial velocity v0 > 0 and disregard the other possibility
(v0 < 0).

As it follows from Figures 8 and 9 a typical in-
termediate localized excitation looks (except Fig. 8c)
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Fig. 7. Morse lattice (N = 200) without on-site potential (ηb = ηD = 0). Utimate soliton structure of the highly-energetic
soliton of Figure 6 when after erasing the phonon background the remaining structure is used as new initial condition at t = 20.
Left panel: evolution of particles velocity distribution for the time interval t = 0–50; right panel: particles velocity distribution
at t = 50.
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Fig. 8. Morse-Morse chain (N = 200). Localized excitations as the result of an initial kick to a single unit at constant ηD = 0.4
for different values of ηb = 0.5 (a), 1.0 (b) and 8.0 (c). Each horizontal panel, left to right, illustrates the time evolution of
the velocity distribution vn(t) after 100 time units. The center pictures display the snapshot at t = 100 and the extreme right
pictures provide a straightforward zooming of a few dozen sites lattice interval in order to see the internal structure of the
localized excitation.

as a two-peak moving structure with alternating ampli-
tudes of peaks. In other words, it may be considered for-
mally as a modulated pulse (a mobile DB/ILM) in which
the modulating envelope proceeds to the right with veloc-
ity vloc while the modulated periodic wave moves to the
left. The pulse is quite narrow, only two-three times wider
than the period of the “carrier wave”. The time period of
the carrier Tperiod decreases with increasing relative influ-
ence of on-site force (parameters ηb and ηD) accompanied

by falling velocity vloc. Eventually the moving structure
becomes immobile as a pinned narrow one-peak DB/ILM
(Fig. 8c). We have also observed the transformation from
a multi-peak structure to a one-peak structure in our nu-
merical simulations for ηb ≈ 4 with ηD = 0.4 (not shown
in Fig. 8). Such case gives the transformation in the de-
pendence of the velocity vloc (Fig. 10a) and of the value
of 2π/Tperiod (Fig. 10b) as functions of the parameter ηb

for ηD = 0.4 (that is corresponding to the case presented

http://www.epj.org
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Fig. 9. Morse-Morse chain (N = 200). Localized excitations as the result of an initial kick to a single unit at constant ηb = 2
for different values of ηD = 0.1 (a), 1 (b) and 2 (c). Each horizontal panel, left to right, illustrates the time evolution of the
velocity distribution vn(t) for 50 time units with cross-sections at t = 50.

in Fig. 8). The velocity falls very fast with increasing ηb

reaching a very small value at ηb ≈ 4. Apparently the ul-
timate localized structure may be classified as a mobile
DB/ILM for ηb < 4 and as a pinned one for ηb > 4 for
the chosen value ηD = 0.4. Such mobile-pinned transfor-
mation feature depends indeed on the value assigned to
the parameter ηD whose influence is much more dramatic
than that of parameter ηb as Figure 9 illustrates for ηb = 2
and different values of ηD.

5 Role of transverse motions: solitons,
DB/ILM and more

As earlier emphasized in a “transversal” lattice (Fig. 2b) if
the on-site bond is symmetric, or in our case weak enough
hence harmonic, a strong initial pulse of velocity excites
simultaneously the two identical localized modes, symmet-
rically moving away from the point of excitations in oppo-
site directions. Choosing v0 = 1 as in the case considered
above for a “longitudinal” chain with no on-site potential
(Figs. 6 and 7) one may indeed observe the two solitons as

illustrated in Figure 11, moving right-to-left and left-to-
right, respectively, with velocity slightly above the sound
velocity but smaller than the corresponding value in the
solely “longitudinal” chain. It is because in the “transver-
sal” lattice the energy of each excited soliton is twice less
than that in the longitudinal lattice for the same level of
excitation. The other feature is the peculiar distribution
of coordinates of particles between solitons (Fig. 11, right
panel) – if particles deviate from equilibrium positions the
same distance there is no restoring force (at least, it is
small for small difference of positions of neighboring par-
ticles) and particles may keep their position far from the
initial location for quite long time. In other words, we have
two connected kinks. Noteworthy is that in the theory of
DNA-like wires [11,24], structures with transverse shifts
of particles, such space distributions of sites are called
“bubbles”. But if there is an on-site force, however weak,
bubbles resolve fast but the solitonic structure changes lit-
tle though the velocity of localized excitations decreases
and may become slightly subsonic. In view of the above
such mobile breathers associated with a bubble may be
denoted as bubble-breathers [24]. It should also be added
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Fig. 11. Morse-Morse “transversal” lattice (N = 200) with transverse deviations of its units albeit without on-site potential
(ηb = ηD = 0). Two highly-energetic identical solitons, symmetrically oppositely moving, are excited following an initial kick to
the particle n = 100 with v0 = 1. Left panel: evolution of particles velocity distribution for time interval t = 0–50; right panel:
snapshot of particles velocity vn (green, line of crosses) and deviation qn (red, dotted line) distributions at t = 50. The soliton
velocity is slightly above the sound velocity.

that a chain without on-site bonds is again one of two
asymptotic models, in contrast to the case with a domi-
nant on-site potential, which is the case of the PB model
of DNA [11,23,24]. In most works using the PB model the
parabolic potential well of inter-site interactions is gener-
ally taken very large relative to the corresponding features
of the on-site potential well. Here, however, such situation
is the case only when the parameter ηD is large enough
and the parameter ηb is small enough. Then with increas-
ing stiffness of the on-site potential solitons transform to
mobile breathers (Fig. 12b) and then to pinned breathers
(Fig. 12c). Overall this occurs very much like in the lon-
gitudinal case. Finally, in a “transversal” lattice the do-
main occupied by phonons, which accompany the localized
modes created following the initial pulse, is concentrated
between soliton-like excitations where the phonons form
a standing wave. Further details on this matter can be
found in reference [24].

6 Conclusion

The transformation of (supersonic) solitons to pinned
breather-like (DB/ILM) excitations via a stage of mobile

localized structures has been studied in anharmonic lat-
tices of particles interacting with inter-site and on-site
Morse forces. First we have considered solely unidirec-
tional longitudinal motions, hence only along the one-
dimensional geometrical structure of the lattice. The study
has permitted to illustrate the influence of the ratio of
on-site to inter-site potential strengths. For simplicity the
case of excitations of localized modes by a strong initial
pulse externally applied to a single lattice unit has been
studied. It has been shown that supersonic solitons, ex-
cited in the lattice without on-site dynamics, transform
first to mobile breather-like modes as the on-site potential
is turned on and grows in relative strength. The DB/ILM
velocity decreases with the increasing influence of the on-
site potential and pinned breathers are the ultimately
surviving excitations if the on-site potential largely over-
whelms the inter-site one. In a second approach to the
Morse-Morse competing dynamics we have also considered
two-dimensional-like Morse-Morse lattices with transverse
motions of particles along the (longitudinal) line but away
from it, hence moving orthogonal to the lattice backbone
structure. In such a case two symmetric identical localized
modes moving in opposite directions, a soliton-like and a
mobile breather-like, are excited by short localized initial
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Fig. 12. Morse-Morse “transversal” lattice (N = 200). Evolution of excitations due to the initial kick to a single particle at
constant ηD = 0.4 and different values of ηb. On each horizontal panel, left to right, it is shown the time evolution of velocity
distribution vn(t) for 50 time units with snapshots vn (green, lines of crosses) and qn (red, dotted lines) at t = 50 for (a) ηb = 0.5,
(b) 2.0 and (c) 6.0.

pulses in the lattice if the inter-site potential is strong
enough. Formation of bubbles (in the language of DNA-
like molecular wires [11,23,24]), bubble-breathers and pin-
ning breathers are observed if the on-site bond overwhelms
the inter-site interaction.
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