About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Latest news

EPJ AP Highlight - Training for the first international nano-car race

A 3 step driving along the Au(111) track. The black cross indicates the tip position for the inelastic tunneling excitation of the Dresden molecule-vehicle.

The first international nano-car race will be held in Toulouse, France, during spring 2017, with the participation of six international teams. The training session of the Dresden Team is reported here.

To prepare their participation, Eisenhut et al. exercised on the Toulouse LT-UHV 4-STM reconfigured for the race with 4 independent controllers (one per scanning tunneling microscope (STM)). Their findings are reported in EPJ AP.

Read more...

EPJ D Highlight - Novel plasma jet offshoot phenomenon explains blue atmospheric jets

Example of the apokamp effect in a plasma jet.

Russian physicists identify mysterious right-angle side-jet occurring off the plasma arc in air at ambient pressure conditions

Ionised matter, like plasma, still holds secrets. Physicists working with plasma jets, made of a stream of ionised matter, have just discovered a new phenomenon. Indeed, Eduard Sosnin from the Institute of High Current Electronics, Russian Academy of Sciences in Tomsk, Russia, and colleagues found a new type of discharge phenomenon in an atmospheric pressure plasma. It has been dubbed apokamp—from the Greek words for ‘off’ and ‘bend’, because it appears at a perpendicular angle to where plasma jets bend. Their findings have been recently published in EPJ D and are particularly relevant for the development of novel applications in medicine, health care and materials processing because they involve air at normal atmospheric pressure, which would make it cheaper than applications in inert gases or nitrogen.

Read more...

EPJ E Highlight - Nanoparticles hitchhiking their way along strands of hair

Corrugated hair surface.

Massaging hair can help more quickly deliver nanoparticle-based treatment to the roots

In shampoo ads, hair always looks like a shiny, smooth surface. But for physicists peering into microscopes, the hair surface looks much more rugged, as it is made of saw-tooth, ratchet-like scales. In a new theoretical study published in EPJ E, Matthias Radtke and Roland Netz have demonstrated that massaging hair can help to apply drug treatment - encapsulated in nanoparticles trapped in the channels formed around individual hairs - to the hair roots. This is because the oscillatory movement of the massaging directs the way these particles are transported.

Read more...

Conference announcements

FUSION17

Hobart, Tasmania, 20–24 February 2017