About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.


Latest news

EPJ Plus Highlight - 100% renewable energy sources require overcapacity

Germany's greenhouse gas (GHG) emissions from 2002 to 2015 and the political target for 2020 (bars).

To switch electricity supply from nuclear to wind and solar power is not so simple

Germany decided to go nuclear-free by 2022. A CO2-emission-free electricity supply system based on intermittent sources, such as wind and solar - or photovoltaic (PV) - power could replace nuclear power. However, these sources depend on the weather conditions. In a new study published in EPJ Plus, Fritz Wagner from the Max Planck Institute for Plasma Physics in Germany analysed weather conditions using 2010, 2012, 2013 and 2015 data derived from the electricity supply system itself, instead of relying on meteorological data. By scaling existing data up to a 100% supply from intermittent renewable energy sources, the author demonstrates that an average 325 GW wind and PV power are required to meet the 100% renewable energy target. This study shows the complexity of replacing the present primary energy supply with electricity from intermittent renewable sources, which would inevitably need to be supplemented by other forms of CO2-free energy production.


EPJ E Highlight - How water can split into two liquids below zero

Representation of the diamond lattices formed by the particle studied.

Theoretical possibility of the coexistence of dual liquid states of matter in sub-zero water due to the origami-like stacking behaviour of microscale moleculesy

Did you know that water can still remain liquid below zero degrees Celsius? It is called supercooled water and is present in refrigerators. At even smaller temperatures, supercooled water could exist as a cocktail of two distinct liquids. Unfortunately, the presence of ice often prevents us from observing this phenomenon. So physicists had the idea of replicating the tetrahedral shape of water molecules - using DNA as a scaffold to create tetrahedral molecules - and thus removing the interference of ice formation. This approach allowed Simone Ciarella from the University of Rome, Italy, and his colleagues to confirm that, in theory, a dual liquid phase is possible in sub-zero water and any other liquids made of tetrahedral molecules. These results have been published in EPJ E. It is a great tale of how the underlying microscopic shape determines the overall macroscopic form.


EPJ ST Highlight - Champagne owes its taste to the finely tuned quality of its bubbles

Flower-shaped structure, frozen through high-speed photography, found during the collapse of bubbles at the surface of a champagne flute.

What provides the wonderful aromas is a long neuro-physico-chemical process that results in bubbles fizzing at the surface of champagne

Ever wondered how the fate of champagne bubbles from their birth to their death with a pop enhances our perception of aromas? These concerns, which are relevant to champagne producers, are the focus of a special issue of EPJ Special Topics, due to be published in early January 2017 - celebrating the 10th anniversary of the publication. Thanks to scientists, champagne producers are now aware of the many neuro-physico-chemical mechanisms responsible for aroma release and flavour perception. The taste results from the complex interplay between the level of CO2 and the agents responsible for the aroma - known as volatile organic compounds - dispersed in champagne bubbles, as well as temperature, glass shape, and bubbling rate.


Conference announcements


Hobart, Tasmania, 20–24 February 2017