About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Latest news

EPJ Quantum Technology Highlight - Gold-diamond nanodevice for hyperlocalised cancer therapy

alt
Colocalisation studies with confocal fluorescence microscopy and acidotropic probes show particles trapped in the lysosomes of the living HeLa cells

Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors

Precise targeting biological molecules, such as cancer cells, for treatment is a challenge, due to their sheer size. Now ,Taiwanese scientists have proposed an advanced solution, based on a novel combination of previously used techniques, which can potentially be applied to thermal cancer therapy. Pei-Chang Tsai from the Institute of Atomic and Molecular Sciences, at the Academia Sinica, Taipei, and colleagues just published in EPJ QT an improved sensing technique for nanometre-scale heating and temperature sensing. Using a chemical method to attach gold nanorods to the surface of a diamond nanocrystal, the authors have invented a new biocompatible nanodevice. It is capable of delivering extremely localised heating from a near-infrared laser aimed at the gold nanorods, while accurately sensing temperature with the nanocrystals.

Read more...

EPJ D Highlight - Identifying ever-growing disturbances leading to freak waves

A schematic one-dimensional illustration of the spatiotemporal evolution of the envelope of wave-train in the absolutely unstable case.

Physicists now better understand wave systems exhibiting unusual disturbances by identifying growing localised patterns as early indicators of such disturbances

Physicists like to study unusual kinds of waves, like freak waves found in the sea. Such wave movements can be studied using models designed to describe the dynamics of disturbances. Theoretical physicists, based in France have focused on finding ways of best explaining how wave disturbance occurs under very specific initial conditions that are key to the genesis of these disturbances. They looked for solutions to this puzzle by resolving a type of equation, called the nonlinear Schrödinger equation. It is solved by applying a method designed for studying instabilities tailored to these initial conditions. Their approach makes it possible to locate exactly where and how pertinent information used to identify disturbance patterns can be extracted from localised disturbances' characteristics. The findings have been published in EPJ D by Saliya Coulibaly, from the University of Lille, and colleagues.

Read more...

EPJ D Colloquium - How many orthonormal bases are needed to distinguish all pure quantum states?

How many different measurement settings are needed in order to uniquely determine a pure quantum state, and how should such measurements be chosen? This problem goes back to a famous remark by Wolfgang Pauli in 1933, in which he raised the question whether or not the position and the momentum distributions are enough to define the wave function uniquely modulo a global phase. The original Pauli problem has a negative answer, but it has evolved into many interesting variants and has been studied from several fruitful perspectives.

In this review article the authors concentrate on a specific form of the Pauli problem, which is concerned with the minimal number of orthonormal bases in a finite dimensional Hilbert space that is needed in order to distinguish all pure quantum states.

Read more...

Conference announcements

No conferences to be advertised here for the moment.