About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more and watch the videos...

Distinguished EPJ Referees

Latest news

EPJ QT Highlight - Steps towards post-quantum security by Aleksey Fedorov

Aleksey Fedorov

Prof. Dr. Aleksey Fedorov is a Junior Principal Investigator at the Russian Quantum Center, Professor of Physics at Moscow Institute of Physics and Technology, and founder of startup companies in quantum technologies. His research is related to quantum information technologies and quantum many-body physics. His paper about world-first quantum-secured blockchain was covered in MIT Technology Review, Business Insider, Forbes and put in the list of "the hottest top 5%" of all research outputs by Altmetrics. Aleksey was selected for ’30-under-30’ for Forbes Russia.

Life in our society is suffused with information technologies. Many of our activities — ranging from online shopping and chatting to operating production environments and management systems — are based on collecting, processing, and transmitting data. One of the key aspects in this regard is security. Surely, the history of the problem of ensuring information security is virtually as long as human history. However, for modern society the issue of information security has become truly vital: unauthorized access to various kinds of information could lead to major losses, including financial losses and loss of reputation, for governments and businesses alike.

Continue reading Aleksey Fedorov’s post here.

Welcoming Prof. Kai Bongs as new Editor-in-Chief of EPJ Quantum Technology

Kai Bongs

It is with great pleasure that we announce that Professor Kai Bongs from the University of Birmingham, UK, has been appointed Editor-in-Chief of EPJ Quantum Technology.

Prof. Bongs is the director of the UK National Quantum Technology Hub in Sensors and Metrology, a consortium of researchers from 11 universities, NPL and over 120 companies, which focuses in translating quantum science enabled precision measurements with cold atoms into technology and economic benefit. He has been working in the field of cold atoms for over 20 years. After studying Physics up to his PhD in the group of Prof. Wolfgang Ertmer at the University of Hannover and a postdoctoral appointment on atom interferometry in the group of Mark Kasevich at Yale University, he did his Habilitation on quantum gas mixtures working with Prof. Klaus Sengstock at the University of Hamburg. Since 2007 he holds a chair at the University of Birmingham heading the group of quantum matter and directing the Birmingham part of the Midlands Ultracold Atom Research Centre, MUARC. His research achievements have been recognised by a Royal Society Wolfson Research Merit Award.

Prof. Bongs takes on this position after the founding Editor, Prof. Gerard Milburn stepped down at the end of 2017. We take this opportunity to show our gratitude to Prof. Milburn for his role in bringing EPJ Quantum Technology to life and for his hard work and leadership in the past four years.

EPJ QT Highlight - How does Earth’s spacetime deformation affect quantum communications?

Credit: CQT, National University of Singapore

Jan Kohlrus investigates relativitic effects to consider when setting up quantum communication systems.

The interplay and overlap between relativity and quantum theory are among the most complex and challenging open problems of modern theoretical physics. This grey area has been extensively studied on the theoretical side, sometimes following very speculative and exotic directions, while very few experiments have been proposed in a way that rigorously incorporates relativity and quantum features.

The purpose of our work is to propose feasible experiments that involve quantum fields in a relativistic framework. In our recent article in EPJ Quantum Technology, we study how observers that undergo different motion, and experience different strengths of the gravitational field, measure pulses of light that propagate from one user to another. In particular, we look at quantum communication schemes between Earth and satellite links, as well as between two satellites.

Continue reading Jan’s post here.

Open calls for papers