About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Distinguished EPJ Referees

Latest news

EPJ E Highlight - Deflating beach balls and drug delivery

A shell buckles as its internal volume is gradually reduced.

The deflation of beach balls, squash balls and other common objects offers a good model for distortion in microscopic hollow spheres. This can help us understand the properties of some cells and, potentially, develop new drug delivery mechanisms.

Many natural microscopic objects – red blood cells and pollen grains, for example – take the form of distorted spheres. The distortions can be compared to those observed when a sphere is ‘deflated’; so that it steadily loses internal volume. Until now, most of the work done to understand the physics involved has been theoretical. Now, however, Gwennou Coupier and his colleagues at Grenoble Alps University, France have shown that macroscopic-level models of the properties of these tiny spheres agree very well with this theory. The new study, which has implications for targeted drug delivery, was recently published in EPJ E.

Read more...

EPJ B Highlight - Determining the shapes of atomic clusters

Defining the shapes of atomic clusters

By considering the crystal structures of atomic clusters in new ways, researchers may be able to better assess whether the groups have distinctive shapes, or whether they are amorphous.

Too large to be classed as molecules, but too small to be bulk solids, atomic clusters can range in size from a few dozen to several hundred atoms. The structures can be used for a diverse range of applications, which requires a detailed knowledge of their shapes. These are easy to describe using mathematics in some cases; while in others, their morphologies are far more irregular. However, current models typically ignore this level of detail; often defining clusters as simple ball-shaped structures. In research published in EPJ B, José M. Cabrera-Trujillo and colleagues at the Autonomous University of San Luis Potosí in Mexico propose a new method of identifying the morphologies of atomic clusters. They have now confirmed that the distinctive geometric shapes of some clusters, as well as the irregularity of amorphous structures, can be fully identified mathematically.

Read more...

EPJ D Highlight - Modelling ion beam therapy

https://commons.wikimedia.org/wiki/ File:Hadrontherapy.jpg Anna.puliaieva [CC BY-SA 4.0 (https://creativecommons.org/ licenses/by-sa/4.0)]

Recent analysis shows precisely how beams of charged particles transfer their energy to water, which has important implications for how these beams are targeted in ion beam cancer therapy.

Hadron beam therapy, which is often used to treat solid tumours, involves irradiating a tumour with a beam of high-energy charged particles, most often protons; these transfer their energy to the tumour cells, destroying them. It is important to understand the precise physics of this energy transfer so the tumour can be targeted precisely. Pablo de Vera of MBN Research Center, Frankfurt, Germany and co-workers in the Universities of Murcia and Alicante, Spain, have produced a consistent theoretical interpretation of the most accurate experimental measurements of ion beams energy deposition in liquid water jets, which is the most relevant substance for simulating interactions with human tissue. Their work is published in EPJ D.

Read more...

Open calls for papers