About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Distinguished EPJ Referees

Latest news

EPJ A - New Structure of the Editorial Board and Editor-in-Chief Appointments

alt
Editorial Board Meeting Heidelberg 2017

EPJ is pleased to announce significant changes concerning the editorial structure of EPJ A. Following the continuous growth and broadening of the journal’s scope over the past few years, the theory section has now been divided into Theory I (Nuclear Physics) and Theory II (Hadron Physics and Quark Matter). Theory I is headed by Prof. Thomas Duguet, who has been newly appointed for this position, while Theory II continues to be headed by Prof. Tamás Biró. Further, and with immediate effect, Prof. Maria Jose Garcia Borge has been appointed Editor-in-Chief for the Experimental Physics section of the journal.

Read more...

EPJ E Highlight - Unexpected undulations in biological membranes

Schematic illustration of the fluctuating membrane in a structured fluid.

Study of the dynamic properties of biological membranes reveals new anomalous behaviour under specific circumstances

How biological membranes - such as the plasma membrane of animal cells or the inner membrane of bacteria - fluctuate over time is not easy to understand, partly because at the sub-cellular scale, temperature-related agitation makes the membranes fluctuate constantly; and partly because they are in contact with complex media, such as the cells’ structuring element, the cytoskeleton, or the extra-cellular matrix. Previous experimental work described the dynamics of artificial, self-assembled polymer-membrane complexes, embedded in structured fluids. For the first time, Rony Granek from Ben-Gurion University of The Negev, and Haim Diamant from Tel Aviv University, both in Israel, propose a new theory elucidating the dynamics of such membranes when they are embedded in polymer networks. In a new study published in EPJ E, the authors demonstrate that the dynamics of membrane undulations inside such a structured medium are governed by distinctive, anomalous power laws.

Read more...

EPJ Plus Highlight - How small does your rice pudding need to get when stirring jam into it?

Gibbs (full lines) and Boltzmann (dashed lines) free energies.

New study shows that two seemingly diverging theories of ever-increasing disorder, known as entropy, can be tested against each other experimentally in the smallest possible systems

Have you ever tried turning the spoon back after stirring jam into a rice pudding? It never brings the jam back into the spoon. This ever-increasing disorder is linked to a notion called entropy. Entropy is of interest to physicists studying the evolution of systems made up of multiple identical elements, like gas. Yet, how the states in such systems should be counted is a bone of contention. The traditional view developed by one of the fathers of statistical mechanics, Ludwig Boltzmann - who worked on a very large number of elements - is opposed to the seemingly disjointed theoretical perspective of another founding scientists of the discipline, Willard Gibbs, who describes systems with a very small number of elements. In a new study published in EPJ Plus, Loris Ferrari from the University of Bologna, Italy, demystifies this clash between theories by analysing the practical consequences of Gibbs’ definition in two systems of a well-defined size. Ferrari speculates about the possibility that, for certain quantities, the differences resulting from Boltzmann's and Gibbs' approach can be measured experimentally.

Read more...

Open calls for papers