About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.


Distinguished EPJ Referees

Latest news

Theory of the n=2 levels in muonic helium-3 ions

In this new article in EPJ D, Franke et al. review the present understanding of Lamb shift, fine- and hyperfine structure of the 2S and 2P states in muonic helium-3 ions in anticipation of the results of the first measurements of several 2S -> 2P transition frequencies in the muonic helium-3 ion, 3He+. This ion is the bound state of a single negative muon μ- and a bare helium-3 nucleus (helion), 3He++.


EPJ Plus Focus Point - Transition to Sustainable Energy Systems

The “Focus Point on the Transition to Sustainable Energy Systems” in the European Physical Journal Plus (EPJ Plus) tries to answer central questions regarding the planned Energy Transition, focusing on the power sector in Europe. Important is the role played by intermittent renewables as a low carbon electricity source, central in the plans by the EU Commission in its Energy Roadmap 2050. Their intermittency however strongly reduces efficiency and security of supply and back up by other systems is unavoidable – large storage and/or nuclear and/or fossil based. Storage of excess electricity production by intermittent renewables at the level required seems far-fetched at this moment and much more research will be needed before this can substantially contribute. With a limited contribution of dispatchable renewable electricity (hydro, bio-fuels etc.) and excluding à priori nuclear power, on various grounds, a continued use of fossil fuels imposes itself to guarantee a secured supply of electricity – in strong contrast with the original aims of the EU Energy Roadmap 2050. A rational debate involving all options is urgently needed and it is hoped that the set of papers in this focus point can contribute to improve insights in a determining factor for the future of our children and grandchildren.

All articles are are available here. For further information read the Editorial.

EPJ E Highlight - The unsuspected synergistic mechanism of the human heart

3D simulations of the heart mechanisms.

3D simulations reveals that every part of the human heart works in combination with the others, while all parts influence each other’s dynamics, giving clues to help prevent cardiac conditions

Did you know that the left side of the heart is the most vulnerable to cardiac problems? Particularly the left ventricle, which has to withstand intense pressure differences, is under the greatest strain. As a result, people often suffer from valve failure or impairment of the myocardium. This is why it is important to fully understand how the blood flow within this part of the heart affects its workings. In a new study published in EPJ E, Valentina Meschini from the Gran Sasso Science Institute, L'Aquila, Italy and colleagues introduce a novel model that examines, for the first time with this approach, the mutual interaction of the blood flow with the individual components of the heart. Their work stands out by offering a more holistic and accurate picture of the dynamics of blow flow in the left ventricle. The authors also perform some experimental validations of their model.


Open calls for papers