About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.


Distinguished EPJ Referees

Latest news

EPJ B Highlight - Futuristic data storage based on controlling the interactions between nanodots magnetic ‘mood’ twirls

Force microscopy image of the magnetisation structure for a part of the array of square elements.

Better understanding of the changing magnetic state of nanometric squares in an array could be the basis for future ultrahigh density data storage

The magnetisation of nanometric square material is not fixed. It moves around in a helical motion. This is caused by the electron whose degree of freedom, referred to as spin, which follows a precession motion centred on the middle of a square nano-magnet. To study the magnetisation of such material, physicists can rely on two-dimensional arrays of square nanomagnets. In a paper published in EPJ B, P. Kim from the Kirensky Institute of Physics, associated with the Russian Academy of Sciences, in Krasnoyarsk, Siberia, Russia, and colleagues have devised a new model taking into account the factors affecting the magnetic interaction between individual nanomagnets. Better controlling such nanomagnets arrays could have applications in ultrahigh density data storage,in an electronic application called spintronics exploiting electron spins and its magnetism, and in micro- and nanosurgery controlled by magnets.


EPJ Plus Highlight - Rush hour metro crowd governed by people’s eagerness to go home

Rush hour crowd governed by people’s eagerness to go home. Credit: Photo by Rafael De Nadai on Unsplash

New model examines the relative role of random interactions between individuals in a crowd compared to interactions stemming from their eagerness to be on their way

Ever found yourself crushed in a metro station at rush hour? The mathematician Carlo Bianca and physicist Caterina Mogno, both from the engineering research lab ECAM-EPMI in Cergy-Pontoise, France, have developed a new model to study the movement of crowds exiting a metro station. In a recent study published in EPJ Plus, they have for the first time employed models typically used to study gases consisting of a large number of molecules that collide at random (known as thermostatted kinetic theory) to study the consequences of the different interactions occurring among pedestrians in a crowd while exiting a metro station.


EPJ D Highlight - When photons spice up the energy levels of quantum particles

Plots of the photon number distributions versus newly discovered coherent states.

New study reveals theoretical calculation of new possible state for quantum particles which have received a photon

Quantum particles behave in mysterious ways. They are governed by laws of physics designed to reflect what is happening at smaller scales through quantum mechanics. Quantum state properties are generally very different to those of classical states. However, particles finding themselves in a coherent state are in a kind of quantum state which behaves like a classical state. Since their introduction by Erwin Schrödinger in 1926, coherent states of particles have found many applications in mathematical physics and quantum optics.

Now, for the first time, a team of mathematical physicists from Togo and Benin, call upon supersymmetry - a sub-discipline of quantum mechanics - to explain the behaviour of particles that have received a photon. These particles are subjected to particular potential energies known as shape-invariant potentials.

In a paper published in EPJ D, Komi Sodoga and colleagues affiliated with both the University of Lomé, Togo, and the University of Abomey-Calavi, in Cotonou, Benin, outline the details of their theory. These findings are relevant to scientists working on solving quantum optics and quantum mechanics applications.


Open calls for papers