About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Distinguished EPJ Referees

Latest news

EPJ E Colloquium - A unified description of colloidal thermophoresis

When colloidal particles find themselves in a temperature gradient they move in response to it, in some cases toward the hotter some toward the cooler side, depending on the specific physical chemistry of the colloid and the solvent surrounding it. This process, called thermophoresis, is generally regarded as a phoretic phenomenon: the thermal motion of a colloid is mainly driven by local hydrodynamic stresses in the surrounding liquid. However a complete and unique theoretical description of thermophoresis has been lacking.

Read more...

EPJ A - New Structure of the Editorial Board and Editor-in-Chief Appointments

alt
Editorial Board Meeting Heidelberg 2017

EPJ is pleased to announce significant changes concerning the editorial structure of EPJ A. Following the continuous growth and broadening of the journal’s scope over the past few years, the theory section has now been divided into Theory I (Nuclear Physics) and Theory II (Hadron Physics and Quark Matter). Theory I is headed by Prof. Thomas Duguet, who has been newly appointed for this position, while Theory II continues to be headed by Prof. Tamás Biró. Further, and with immediate effect, Prof. Maria Jose Garcia Borge has been appointed Editor-in-Chief for the Experimental Physics section of the journal.

Read more...

EPJ E Highlight - Unexpected undulations in biological membranes

Schematic illustration of the fluctuating membrane in a structured fluid.

Study of the dynamic properties of biological membranes reveals new anomalous behaviour under specific circumstances

How biological membranes - such as the plasma membrane of animal cells or the inner membrane of bacteria - fluctuate over time is not easy to understand, partly because at the sub-cellular scale, temperature-related agitation makes the membranes fluctuate constantly; and partly because they are in contact with complex media, such as the cells’ structuring element, the cytoskeleton, or the extra-cellular matrix. Previous experimental work described the dynamics of artificial, self-assembled polymer-membrane complexes, embedded in structured fluids. For the first time, Rony Granek from Ben-Gurion University of The Negev, and Haim Diamant from Tel Aviv University, both in Israel, propose a new theory elucidating the dynamics of such membranes when they are embedded in polymer networks. In a new study published in EPJ E, the authors demonstrate that the dynamics of membrane undulations inside such a structured medium are governed by distinctive, anomalous power laws.

Read more...

Open calls for papers