About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more and watch the videos...

Distinguished EPJ Referees

Latest news

EPJ E Highlight - Active Brownian particles have four distinct states of motion

Switching between locked and running states

Depending on the friction and external bias forces they experience, self-propelled Brownian particles will take on one of four possible states of motion. The discovery could help researchers to draw deeper insights into the behaviours of these unique systems in nature and technology.

Active Brownian motion describes particles which can propel themselves forwards, while still being subjected to random Brownian motions as they are jostled around by their neighbouring particles. Through new analysis published in EPJ E, Meng Su at Northwestern Polytechnical University in China, together with Benjamin Lindner at Humboldt University of Berlin, Germany, have discovered that these motions can be accurately described using four distinct mathematical patterns.


EPJ Data Science Highlight - Investigating gender equality in urban cycling

An overview of the gender gap in recreational cycling across cities included in the study according to Strava. Credit: A. Battison et al. (2023)

New research looks at why cycling has a low uptake among women in urban areas

Over recent years not only has cycling proved itself to be an outdoor activity with tremendous health benefits, but it has also presented itself as a useful tool in the quest to find an environmentally friendly method of urban transportation.

Despite the increasing popularity of cycling, many countries still have a negligible uptake in the pursuit and this is even more pronounced when considering how many women engage in cycling. To this day, a mostly unexplained gender gap exists in cycling.

A new paper in EPJ Data Science by the University of Turin Department of Computer Science researcher Alice Battiston and her co-authors attempts to understand the determinants behind the gender gap in cycling on a large scale.


EPJ E Highlight - Improving fluid simulations with embedded neural networks

Simulating flows in a complex fluid

While neural networks can help to improve the accuracy of fluid flow simulations, new research shows how their accuracy is limited unless the right approach is taken. By embedding fluid properties into neural networks, simulation accuracy can improve by orders of magnitude.

The Lattice Boltzmann Method (LBM) is a simulation technique used to describe the dynamics of fluids. Recently, there has been an increasing interest in employing neural networks for computational modelling of fluids. The results of a collaboration between researchers from Eindhoven University of Technology and Los Alamos National Laboratory, published in EPJ E, show how neural networks can be embedded into a LBM framework to model collisions between fluid particles. The team found that it is essential to embed the correct physical properties into the neural network architecture to preserve accuracy. These discoveries could deepen researchers’ understanding of how to model fluid flows.


Open calls for papers

Conference announcements