About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Distinguished EPJ Referees

Latest news

EPJ A Highlight - Emergence of nuclear rotation from elementary interactions between the nucleons

alt
Rotational bands in an ab initio calculations for the nuclear excitation spectrum of 11Be.

Nuclei are quantum many-body systems which exhibit emergent degrees of freedom, from shell structure and clustering to collective rotations and vibrations. Such emergent phenomena are traditionally the domain of phenomenological models, yet their description can now be placed on a more fundamental footing in terms of microscopic theory. The nature and emergence of rotational bands are presently investigated in light nuclei through ab initio nuclear many-body calculations. Beyond simply analyzing spectroscopic signatures, the structural insight are investigated in terms of angular momentum coupling schemes and group theoretical correlations as underpinnings for the rotational structure.

EPJ D Highlight - Slowing light in an optical cavity with mechanical resonators and mirrors

A schematic diagram of the position-dependent mass optomechanical system studied in this work.

Theoretical physicists Kamran Ullah and Hameed Ullah have shown how a position-dependent mass optomechanical system involving a cavity between two mirrors, one attached to a resonator, can enhance induced transparency and reduce the speed of light.

We are all taught at high school that the speed of light through a vacuum is about 300000 km/s, which means that a beam from Earth takes about 2.5 seconds to reach the Moon. It naturally moves more slowly through transparent objects, however, and scientists have found ways to slow it dramatically. Optomechanics, or the interaction of electromagnetic radiation with mechanical systems, is a relatively new and effective way of approaching this. Theoretical physicists Kamran Ullah from Quaid-i-Azam University, Islamabad, Pakistan and Hameed Ullah from the Institute of Physics, Porto Alegre, Brazil have now demonstrated how light is slowed in a position-based mass optomechanical system. This work has been published in EPJ D.

Read more...

EPJ D Topical review - Crystal-based intensive gamma-ray light sources

In a Topical review just published in EPJD, A.V. Korol and A.V. Solov'yov (MBN Research Center, Germany) discuss possibilities for designing and practical realization of novel intensive gamma-ray Crystal-based LSs (CLS) operating at photon energies from 102 keV and above that can be constructed exposing oriented crystals to beams of ultrarelativistic particles. CLSs can generate radiation in the photon energy range where the technologies based on the fields of permanent magnets become inefficient or incapable.

Read more...

Open calls for papers