About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Distinguished EPJ Referees

Latest news

EPJ Data Science Highlight - Using deep learning to “see” inside homes across the world

Copyright: Pixabay License

How much does someone's living room tell about how they live? Peeking into another person's life might be just part of natural human curiosity, but the answer to this question may provide insights in a wide range of aspects of human behavior. A new study published in EPJ Data Science uses the power of machine learning to explore patterns of home decors—and what they could tell about their owners—in popular accommodation website Airbnb.

See guest post by Clio Andris and Xi Liu originally published in the SpringerOpen blog

EPJE Topical Review: how capillarity drives the movement of small objects

Moving around small objects using capillary forces is a phenomenon that has stimulated scientists trying to understand the fundamental mechanisms at play. It is also important for many industrial, technological and analytical processes, for example micro-fluidics, oil and gas displacement, mineral flotation, miniature robot and biomechanics. In this EPJ E topical review article Jianlin Liu and Shanpeng Li present a critical review of capillarity-driven migration in which many examples are presented and explained. The small objects in question are non-deformable objects, such as particles, rods, disks and metal sheets as well as soft objects, such as droplets and bubbles. The authors clarify some misunderstandings on the conventional views on these systems.

Read more...

EPJ D Highlight - Electron-gun simulations explain the mechanisms of high-energy cosmic rays

The chance of photodetachment of hydrogen ions depends on the speed of the surface motion.

Model explains the mechanisms of scraping negative ions from moving surfaces under a strong electric field

When cosmic rays collide with planets or debris, they lose energy. Scientists use the collision of electrons with a moving surface to simulate this process. A new study published in EPJ D provides a rudimentary model for simulating cosmic rays’ collisions with planets by looking at the model of electrons detached from a negative ion by photons. In this work, Chinese physicists have for the first time demonstrated that they can control the dynamics of negative ion detachment via photons, or photodetachment, on a moving surface.

Read more...

Open calls for papers