About EPJ

The European Physical Journal (EPJ) is a series of peer-reviewed journals covering the whole spectrum of physics and related interdisciplinary subjects. EPJ is committed to high scientific quality in publishing and is indexed in all main citation databases.

Read more...

Distinguished EPJ Referees

Latest news

EPJ ST Highlight – Introduction to Celestial Mechanics in the XXIst Century

Space exploration is moving into a new era, the turn of the century has seen past glories fade and the focus of science and research move from one-off achievements and firsts, to the establishment of frameworks that will encourage sustainability. At the same time, the more we learn about space, the more we realise that plans must be put in place to mitigate threats from beyond our own atmosphere. As such, the EPJ Special Topics issue on ‘Celestial Mechanics in the XXIst Century’ reflects this shift in attention by spotlighting research that aims to cement humankind’s place amongst the stars.

Here, we present highlights from this issue where we learn how spacecrafts can get a boost in ‘Aerogravity Assisted’ interactions, how we might reduce the risk of space debris collision, and how a tethered diversion might protect Earth from asteroid impact.

EPJ ST Highlight - Spacecrafts get a boost in ‘Aerogravity Assisted’ interactions

The Voyager 2 probe gained the energy boost to escape the solar system from an AGA (NASA/JPL)

New research examines the effect of rotation and other variables in the applications of ‘aerogravity assisted’ manoeuvres to obtain an energy boost for space craft.

In a recent paper published in EPJ Special Topics, Jhonathan O. Murcia Piñeros, a post-doctoral researcher at Space Electronics Division, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, and his co-authors, map the energy variations of the spacecraft orbits during ‘aerogravity assisted’ (AGA) manoeuvres. A technique in which energy gains are granted to a spacecraft by a close encounter with a planet or other celestial body via that body’s atmosphere and gravity.

Read more...

EPJ ST Highlight - Reducing the risk of space debris collision

Debris plot by NASA / Public Domain

An increase in space launches requires the development of a method to clear space debris which could collide with valuable equipment. One plausible method of achieving this through the use of a tug vehicle requires a successful connection procedure.

As humanity expands its horizons beyond the Earth and begins to consider space missions with extended duration, sustainability necessitates the launch of more space vehicles, increasing the risk of collision with existing space debris. One method of clearing this debris involves a tug vehicle dragging it to a safe region. In a new paper published in EPJ Special Topics, authors Antônio Delson Conceição de Jesus and Gabriel Luiz F. Santos, both from the State University of Feira de Santana, Bahia, Brazil, model the complex rendezvous manoeuvres a tug vehicle clearing space debris would have to undergo to mitigate the risk of a collision that could cause irreparable damage at the moment of coupling.

Read more...

Open calls for papers