Distinguished EPJ Referees

EPJ H Editor Jürgen Renn receives 2023 Abraham Pais Prize for History of Physics

alt
Prof. Jürgen Renn

The prestigious Abraham Pais Prize for History of Physics, awarded each year by the American Physical Society, recognizes outstanding scholarly achievements in the history of physics. Professor Jürgen Renn, Editor of EPJH: Historical Perspectives on Contemporary Physics and Archive for History of Exact Sciences receives the 2023 Abraham Pais Prize for History of Physics "for contributions to the historiography of modern and early modern science, in particular, studies of Albert Einstein; and for contributing scholarship and taking public stances that directly raise the social relevance of science historiography."

Read more...

EPJ H Highlight - Legacy of a molecular dynamics trailblazer

alt
Chemists Martin Karplus (L) and J. Andrew McCammon (R) in Sweden in 1982

Computer simulations meet biochemistry

Life is motion. And so, to understand how living organisms function, one must understand the movement and reorganisation of the atoms and molecules that compose them. The approach called “molecular dynamics simulation” enables scientists to use computer programmes to simulate the dynamic motion of all the atoms in a molecular system as a function of time.

In a new paper in EPJ H: Historical Perspectives on Contemporary Physics, Daniele Macuglia from Peking University in Beijing, China, Benoît Roux from the University of Chicago, USA, and Giovanni Ciccotti from the University of Rome, Italy, explain how the theoretical chemist Martin Karplus and his team carried out the first molecular dynamics simulation of a large biological molecule, a protein, deeply impacting biology and the physical sciences in the 20th and 21st centuries. Currently, machine learning researchers are using biomolecular simulations to better understand their time-dependent motions and the function that governs the forces between them.

Read more...

EPJ H Highlight - Fermi’s ground-breaking figure

alt
Fermi’s radial wave function

How the radial wave function transformed physics

One way to better understand an atom is to shoot a particle at it and infer the atom’s properties based on how the particle bounces off it. In the mid-1930s, the physicist Enrico Fermi showed that one measurable number – the scattering length – illuminated everything that could be known about an electron scattering off an atom, or a neutron scattering off a nucleus. In a new paper in EPJ H: Historical Perspectives on Contemporary Physics, Chris Gould from North Carolina State University in Raleigh, USA, explains how Fermi’s simple sketch of a radial wave function laid the groundwork for a better understanding of low energy scattering phenomena, and led in turn to the concept of the pseudopotential, widely used in many areas of physics, including ultracold atom research and studies of qubits in realisations of quantum computers.

Read more...

EPJ H Highlight - A step towards quantum gravity

alt
Representation of the Earth affecting the curvature of spacetime. https://commons.wikimedia.org/wiki/ File:Spacetime_lattice_analogy.svg Mysid, CC BY-SA 3.0.

Resolving the problem of time

In Einstein’s theory of general relativity, gravity arises when a massive object distorts the fabric of spacetime the way a ball sinks into a piece of stretched cloth. Solving Einstein’s equations by using quantities that apply across all space and time coordinates could enable physicists to eventually find their ‘white whale’: a quantum theory of gravity. In a new article in EPJ H: Historical Perspectives on Contemporary Physics, Donald Salisbury from Austin College in Sherman, USA, explains how Peter Bergmann and Arthur Komar first proposed a way to get one step closer to this goal by using Hamilton-Jacobi techniques. These arose in the study of particle motion in order to obtain the complete set of solutions from a single function of particle position and constants of the motion.

Read more...

EPJ H Highlight - Revisiting the history of CPT theorem

alt
CPT theorem was vital to our understanding of how particles and their antiparticles behave. Credit: Robert Lea

A new review looks at an important and often overlooked aspect of physics that suggested symmetry in the particle zoo and how it could be broken.

At the beginning of the 20th century the development of quantum mechanics and relativity changed the face of physics forever. While much has been written about this revolution, less is known about the development of the CPT theorem — vital to quantum field theory and modern physics.

A new paper published in EPJ H and authored by Alexander S. Blum and Andres Martınez de Velasco from Max Planck Institute for the History of Science, Berlin, looks at the roots of CPT theorem and its influence over modern physics.

Read more...

EPJ H Highlight - Documenting the first attempt at a gravitational-wave observatory in Europe

alt
Binary neutrons stars generate ripples in spacetime, gravitational waves, detected here on Earth by interferometers like LIGO. Credits: R. Hurt/Caltech-JPL

EUROGRAV was set to be a network of gravitational wave antennas in Europe. A new paper looks at the reasons it never happened.

First predicted in Einstein’s theory of general relativity, gravitational waves are tiny ripples in spacetime generated by titanic and powerful cosmic events. The great physicist believed that no equipment would ever be sensitive to detect these faint cosmic ripples. Fortunately, Einstein was wrong, but that doesn’t mean that the detection of gravitational waves has been easy.

The history of a planned array interferometer gravitational wave detectors to be built in Europe during the late 1980s, the reasons this failed, and the parallels with current detectors, are documented in a new paper published in EPJ H, authored by Adele La Rana, University of Verona, and INFN Section of Sapienza University, Italy.

Read more...

EPJ H Highlight - Acknowledging Fermi’s contributions to early quantum statistics

alt
Fermi’s research was notably independent. https://en.wikipedia.org/wiki/ Enrico_Fermi#/media/File: Enrico_Fermi_1943-49.jpg

Enrico Fermi’s ideas played a key role in the origins of quantum statistics, but so far, they have been largely overlooked in historical analysis

Within large systems of identical fermions, Fermi-Dirac statistics describes how identical fermions may never occupy the same quantum state. First introduced by Italian physicist, Enrico Fermi, this concept was a key step in our early understanding of quantum mechanics – yet so far, Fermi’s contributions have been largely overlooked in historical analysis. Through new research published in EPJ H, Enric Pérez and Joana Ibáñez, both at the University of Barcelona, Spain, offer a critical analysis of Fermi’s ideas, and assess their immediate impact on our early conceptions of quantum mechanics.

Read more...

EPJ H Highlight - Assessing the modern relevance of Schrödinger’s time reversal

alt
Schrödinger’s ideas transformed quantum mechanics. https://en.wikipedia.org/wiki/Erwin_ Schrödinger#/media/File:Erwin_ Schrödinger_(1933).jpg

Erwin Schrödinger’s landmark 1931 paper provided a basis for several important conceptions in quantum mechanics, but a new translation and commentary highlights its continuing relevance in modern statistical nanophysics

In 1931, Erwin Schrödinger published a ground-breaking paper, named ‘On the Reversal of the Laws of Nature.’ The study aimed to prove the possibility of a classical structure governed by probability, which displays a property called ‘time reversal symmetry’: where the physical laws underlying the system would remain the same, whether time flowed forwards or backwards. A new English translation of Schrödinger’s paper, published in EPJ H, has now been made by Raphael Chetrite at the University of Nice Sophia Antipolis; Paolo Muratore-Ginanneschi at University of Helsinki; and Kai Schwieger at iteratc GmbH Stuttgart. In an additional commentary, the team emphasise the relevance of his intuitions for modern developments in statistical nanophysics.

Read more...

EPJ H Highlight - Deciphering Boltzmann’s response to Loschmidt’s paradox

alt
Boltzmann’s reaction has baffled modern readers. https://en.wikipedia.org/wiki/ Ludwig_Boltzmann#

New analysis offers a clarified translation and detailed commentary of Boltzmann’s original reaction to Loschmidt’s paradox

In 1876, Austrian physicist Josef Loschmidt published his ‘reversibility paradox,’ arguing that the time-symmetric processes demanded by fundamental physics are at odds with the second law of thermodynamics. A few months later, Loschmidt’s friend Ludwig Boltzmann, renowned for his statistical interpretation of thermodynamics, published his reaction to the paradox. However, the convoluted nature of his response has long remained baffling to modern readers. Through new analysis published in EPJ H, Olivier Darrigol at the CNRS in France clarifies Boltzmann’s main points, through a new translation and detailed commentary of his 1877 text.

Read more...

EPJ H Highlight - A shifting approach to modelling phase transitions

alt
Mapping out phase transitions

Between the years 1937 and 1970, physicists went from taking a ‘naturalistic’ approach to modelling phase transitions, to a ‘caricature’ approach – which incorporated far less realistic models. New analysis of this period provides new insights into this profound shift in thinking.

Models of complex physical systems are a central aspect of theoretical physics. Yet despite their importance, there isn’t a single, overarching approach to the practice: meaning researchers in separate branches of physics will rarely use the same methods to construct their models. In one particularly interesting case, approaches for modelling phase transitions underwent a drastic transformation, between the years of 1937 and 1970. In a new paper published in EPJ H, Martin Niss at Roskilde University, Denmark, characterises this fundamental change in thinking.

Read more...

Open calls for papers