EPJ B Highlight - Greater government responsiveness is paramount to maintaining stable societies
- Details
- Published on 20 November 2017

Complex systems models reveal that socio-political instabilities are so predictable that the need to reduce the time lag in political decision-making is blatantly obvious
The Brexit is the perfect example of a time-delayed event. It will happen, if at all, only several years after the referendum vote. Dynamical systems with time delays, like societies making political decisions, have attracted considerable attention from physicists specialised in complex systems. In this new study published in EPJ B, Claudius Gros from Goethe University Frankfurt, Germany has shown that over time, the stability of our democracies can only be preserved by finding ways to reduce the time span governments and other political actors typically need to respond to the wishes of citizens, particularly when confronted with external shocks. That’s because citizens’ opinions are now forming much more quickly than ever before, relative to the time lags that policy decision making involves. This means that drastic changes in modes of governance may be required in order to keep democratic societies stable.
The author uses the theory of dynamical systems with time delays to understand how societal instabilities have developed in modern democracies. The key premise is that political decision-making takes place over time periods that are typically on the order of years. By contrast, when Gros models modern democracies he accounts for the continuously accelerating pace in the formation of citizens’ political opinions and their high sensitivity to deviations from mainstream political opinions, as manifested in political correctedness.
Gros finds that the acceleration of communication due to the internet and smartphones has also accelerated how quickly citizens form political opinions. Thus, the typical time scale for opinion formation - between 7 and 15 months - reaches a tipping point , beyond which instabilities lead to erratic political developments. The time the political system takes to responds to external shocks, such as financial crises, formally diverges at this tipping point.
C. Gros (2017), Entrenched time delays versus accelerating opinion dynamics. Are advanced democracies inherently unstable?,
European Physical Journal B 90: 223, DOI: 10.1140/epjb/e2017-80341-y
Open calls for papers
-
EPJ A Topical Collection devoted to the legacy of Peter Schuck
-
EPJ A Topical Collection: Radiative Corrections: From Medium to High Energy Experiments
-
EPJ A Topical Collection: Short-Range Correlations and the EMC Effect
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ D Topical Issue: Electron and Positron Interactions and Their Applications: a tribute to Professor Michael Brunger
-
EPJ D Topical Issue: Dynamics and Photodynamics: from isolated molecules to the condensed phase
-
EPJ D Topical Issue: Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: Fundamentals and Applications (2022)
-
EPJ D Topical Issue: Quantum Walks and applications
-
EPJ E Topical Issue: 50 years of Small Angle Neutron Scattering at the ILL in Grenoble
-
EPJ E Topical Issue: Festschrift in honor of Philip (Fyl) Pincus
-
EPJ E Topical Issue: Novel Molecular Materials and Devices from Functional Soft Matter
-
EPJ H Special Issue: History for Physics: Contextualizing modern developments in the foundations of quantum theory
-
EPJ Plus Focus Point Issue: Advances in cryogenic detectors for dark matter, neutrino physics and astrophysics
-
EPJ Plus Focus Point Issue: Citizen science for physics: From Education and Outreach to Crowdsourcing fundamental research
-
EPJ Plus Focus Point Issue: Focus Point on Higher Derivatives in Quantum Gravity: Theory, Tests, Phenomenology
-
EPJ Plus Focus Point Issue: The Magic of Glass
-
EPJ Quantum Technology - Open Calls for Papers
-
EPJ ST Special Issue Celestial Mechanics: new discoveries and challenges for space exploration
-
EPJ ST Special Issue: Application of Fractional-Calculus in Physical Systems
-
EPJ ST Special Issue: Machine Learning for quantum many-body systems
-
EPJ ST Special Issue: Molecular and Cellular Mechanics
-
EPJ Techniques and Instrumentation - Open Calls for Papers