EPJ A Highlight - Paving the way for effective field theories
- Details
- Published on 01 February 2021

A detailed analysis of theories which approximate the underlying properties of physical systems could lead to new advances in studies of low-energy nuclear processes
Over the past century, a wide variety of models have emerged to explain the complex behaviours which unfold within atomic nuclei at low energies. However, these theories bring up deep philosophical questions regarding their scientific value. Indeed, traditional epistemological tools have been rather elaborated to account for a unified and stabilised theory rather than to apprehend a plurality of models. Ideally, a theory is meant to be reductionist, unifying and fundamentalist. In view of the intrinsic limited precision of their prediction and of the difficulty in assessing a priori their range of applicability, as well as of their specific and disconnected character, traditional nuclear models are necessarily deficient when analysed by means of standard epistemological interpretative frameworks.
The theoretical construct brought by so-called effective field theories allows a better articulation of the tension between the natural reductionist force at play in physical sciences and the need to account for phenomena emerging at various energy/spatial scales in complex systems such as the atomic nucleus. Because of the various scales involved, a tower or tree-like hierarchies of inter-related effective field theories is inherently necessary and thus needs to be formulated and articulated. This is mandatory to develop a coherent, efficient and salient description of the zoology of nuclear phenomena.
This special issue, published in EPJ A, presents a coherent collection of work by theoretical experts from around the world regarding the use of effective field theories. Several unanswered questions are addressed and clarified, leading to detailed assessments of the philosophical foundations of effective field theories. The collected studies show how these ideas become relevant in low-energy nuclear systems, as well as in biological and gravitational systems – which have comparable levels of underlying complexity. The outcomes of this research pave the way for new advances in the wider-field of low-energy nuclear physics.
Open calls for papers
-
EPJ A Topical Issue: First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ A Topical Issue: Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy ion collisions, and astrophysics
-
EPJ A Topical Issue: The QCD Phase Diagram in Strong Magnetic Fields
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ B Topical Issue: Evolutionary Game Theory
-
EPJ B Topical Issue: Recent progress and emerging trends in Molecular Dynamics
-
EPJ D Topical Issue: Advances in Multi-Scale Modelling of Intense Electronic Excitation Processes
-
EPJ D Topical Issue: Atoms and Molecules in a Confined Environment
-
EPJ D Topical Issue: Low Temperature Plasmas: Processes, Diagnostics and Applications
-
EPJ D Topical Issue: Quantum Aspects of Attoscience
-
EPJ D Topical Issue: Spectroscopy of biomolecular ions in vacuo
-
EPJ D Topical Issue: “Advances in Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: from Biomolecules to Space Particles" (2020)
-
EPJ E Special Issue: Diffusion and Convection in Nature
-
EPJ E Topical Issue: Physics and Geometry of Flexible Plates and Shells
-
EPJ E Topical Issue: Advances in Computational Methods for Biological Physics
-
EPJ E Topical Issue: Disordered, non-equilibrium systems: From supercooled liquids to amorphous solids
-
EPJ E Topical Issue: Physics of phase separation in cell biophysics: From non-equilibrium droplets to reaction-diffusion systems
-
EPJ E Topical Issue: Tissue Mechanics
-
EPJ N Topical Issue: Liquid-gas and liquid-vapour flows: theory, simulation and experiments
-
EPJ Plus Focus Point Issue: Breakthrough optics- and complex systems-based technologies of modulation of drainage and clearing functions of the brain
-
EPJ Quantum Technology: Special Issue on Quantum Industry
-
EPJ Quantum Technology: Special Issue on Quantum Metrology & Quantum Enhanced Measurement
-
EPJ ST Special Issue: Chaotic variable-order fractional neural networks
-
EPJ ST Special Issue: Complex Bio Rhythms
-
EPJ ST Special Issue: Current Trends in Computational and Experimental Techniques in Nonlinear Dynamics
-
EPJ ST Special Issue: Intense laser-matter interaction in atoms, finite and condensed systems
-
EPJ ST Special Issue: Modeling, Machine Learning and Astronomy
-
EPJ ST Special Issue: Symmetry, Dynamics and Strings: A Centennial Issue in Honor of Yoichiro Nambu
-
EPJ ST Special Issue: The Accelerating Universe – Evidence and Theories
-
EPJ ST Special Issue: Tipping in Complex Systems: Theory, Methods & Applications
-
EPJ ST Special Issue: Transport Phenomena and Phase Transitions in Soft and Disordered Systems
-
EPJ Techniques and Instumentation: Diagnostics for electric propulsion systems