EPJ B Highlight - Exploring mass dependence in electron-hole clusters
- Details
- Published on 09 June 2020

New calculations reveal that the behaviours of electron-hole clusters depend strongly on the masses of their particles.
In solid materials, when an electron changes position without another to fill its place, a positively charged ‘hole’ can appear which is attracted to the original electron. In more complex situations, the process can even result in stable clusters of multiple electrons and holes, whose behaviours all depend on each other. Strangely, the masses of each particle inside a cluster can be different to their masses when they are on their own. However, physicists aren’t yet entirely clear how these mass variations can affect the overall properties of clusters in real solids. Through a study published in EPJ B, Alexei Frolov at the University of Western Ontario, Canada, reveals that the behaviour of one type of three-particle cluster displays a distinct relationship with the ratio between the masses of its particles.
Clusters of electrons and holes are already known to affect the absorption of light by semiconductors, which are now key components of many modern technologies. Frolov’s research could significantly improve our understanding of these important materials, and it may also enable researchers to better explain smaller details in their optical and infrared spectra. In his study, Frolov considered a cluster containing two electrons with ordinary masses, and one hole which could vary between one and two electron masses. Through his calculations, distinctive behaviours emerged which displayed clear relationships with the ratio between the mass of this heavier hole, and that of each lighter electron.
Frolov based his calculations around the principles of quantum mechanics, which he used to derive a series of formulas to describe the mass dependence of three-particle clusters extremely accurately. He now hopes that these formulas could be modified to describe clusters containing four or more particles with varying masses. If achieved, this would create new opportunities to understand and fine-tune the properties of real semiconductors in future research.
A Frolov (2020), Mass-dependencies of the bound state properties for three-body positronium-like exitonic complexes, European Physical Journal B 93:87, DOI: 10.1140/epjb/e2020-10076-7
Open calls for papers
-
EPJ A Topical Issue: First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ A Topical Issue: Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy ion collisions, and astrophysics
-
EPJ A Topical Issue: The QCD Phase Diagram in Strong Magnetic Fields
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ B Topical Issue: Evolutionary Game Theory
-
EPJ B Topical Issue: Recent progress and emerging trends in Molecular Dynamics
-
EPJ D Topical Issue: Atoms and Molecules in a Confined Environment
-
EPJ D Topical Issue: Low Temperature Plasmas: Processes, Diagnostics and Applications
-
EPJ D Topical Issue: Quantum Aspects of Attoscience
-
EPJ D Topical Issue: Spectroscopy of biomolecular ions in vacuo
-
EPJ D Topical Issue: “Advances in Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: from Biomolecules to Space Particles" (2020)
-
EPJ E Special Issue: Diffusion and Convection in Nature
-
EPJ E Topical Issue: Physics and Geometry of Flexible Plates and Shells
-
EPJ E Topical Issue: Advances in Computational Methods for Biological Physics
-
EPJ E Topical Issue: Disordered, non-equilibrium systems: From supercooled liquids to amorphous solids
-
EPJ E Topical Issue: Physics of phase separation in cell biophysics: From non-equilibrium droplets to reaction-diffusion systems
-
EPJ E Topical Issue: Tissue Mechanics
-
EPJ N Topical Issue: Liquid-gas and liquid-vapour flows: theory, simulation and experiments
-
EPJ Plus Focus Point Issue: Breakthrough optics- and complex systems-based technologies of modulation of drainage and clearing functions of the brain
-
EPJ Quantum Technology: Special Issue on Quantum Industry
-
EPJ Quantum Technology: Special Issue on Quantum Metrology & Quantum Enhanced Measurement
-
EPJ ST Special Issue: Transport properties of non-Newtonian nanofluids and applications
-
EPJ ST Special Issue: Chaotic variable-order fractional neural networks
-
EPJ ST Special Issue: Circuit Application of Chaotic Systems: Modeling, Dynamical Analysis and Control
-
EPJ ST Special Issue: Complex Bio Rhythms
-
EPJ ST Special Issue: Intense laser-matter interaction in atoms, finite and condensed systems
-
EPJ ST Special Issue: Modeling, Machine Learning and Astronomy
-
EPJ ST Special Issue: Non-equilibrium phase transitions in heterogeneous systems: biophysical aspects
-
EPJ ST Special Issue: Strong Correlations in Dense Matter Physics
-
EPJ ST Special Issue: The Accelerating Universe – Evidence and Theories
-
EPJ ST Special Issue: Tipping in Complex Systems: Theory, Methods & Applications
-
EPJ Techniques and Instrumentation: Instrumentation and Control of Large Helium Cryogenic Systems
-
EPJ Techniques and Instumentation: Diagnostics for electric propulsion systems