EPJ B Highlight - Studying the pseudogap in superconducting cuprate materials
- Details
- Published on 06 May 2022

Despite being vital to the study of superconductivity in cuprate materials the physical origins of the pseudogap remain a mystery.
Over three decades since the discovery of high-temperature superconductivity in ceramic cuprate materials, investigating the electronic states in cuprate materials to advance the understanding of the superconducting phase and related phenomena has become of incredible importance.
In a new paper published in the EPJ B, Ernesto Raposo from the Federal University of Pernambuco, Brazil, and his co-authors, look at one of the essential physical properties of cuprate superconducting compounds, the pseudogap, which describes a state where the Fermi surface of a material possesses a partial energy gap.
Despite impressive progress in the study of cuprate superconducting compounds, the authors point out that researchers have yet to reach a consensus on the physical origin of the pseudogap phase in these compounds.
To tackle this problem, the team employs the one-band Hubbard Hamiltonian of interacting neighbouring electrons on the CuO2-planes of cuprate systems to examine the emergence of the pseudogap phase.
As well as considering the usual on-site Coulomb repulsion energy and hopping of electrons to the nearest neighbour sites, the researchers also considered a competing mechanism of jumps to next-nearest neighbour sites.
To conduct their study, the team doped the system either with electrons or holes to approximate the critical doping concentrations at which the pseudogap closes down in addition to estimating the concentration range over which it is sustained.
Using a model created to reflect the parameters of the cuprate compound La2CuO4, the team found the critical electron and hole doping concentrations and also obtained the charge-transfer gap and maximum pseudogap energies.
The authors say that the pseudogap does not open when the next-nearest-neighbouring kinetic energy nullifies, describing this finding as remarkable.
The researchers’ calculations indicate that the hopping energy to the next-nearest neighbour matches the value of the observed pseudogap in the experimental measure in cuprate systems.
This suggests that competing electron hopping along the nodal directions of the sublattice Brillouin zone could play a role in the emergence of the pseudogap phase in cuprate materials.
Vielza, Y., de Oca, A.C.M., Coutinho-Filho, M.D. et al. Pseudogap Mott-phase in cuprate superconductors: a Hartree–Fock study with limited next-nearest-neighbor hopping, Eur. Phys. J. B 95:33, https://doi.org/10.1140/epjb/s10051-022-00298-w
Open calls for papers
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ B Topical Issue: Evolutionary Game Theory
-
EPJ B Topical Issue: Recent developments in the functional renormalization group approach to correlated electron systems
-
EPJ D Topical Issue on Electron-Driven Processes from Single Collisions to High-Pressure Plasmas
-
EPJ D Topical Issue: Atomic, Molecular and Optical Techniques for Fundamental Physics
-
EPJ D Topical Issue: Dynamics of Systems on the Nanoscale (2021)
-
EPJ D Topical Issue: High Field QED Physics
-
EPJ D Topical Issue: Quantum Optics of Light and Matter: Honouring Alain Aspect
-
EPJ Data Science Special Issue on Data Science Perspectives on Economic Crime
-
EPJ E Topical Issue: 50 years of Small Angle Neutron Scattering at the ILL in Grenoble
-
EPJ E Topical Issue: Quantitative AI in Complex Fluids and Complex Flows: Challenges and Benchmarks
-
EPJ H Special Issue: History for Physics: Contextualizing modern developments in the foundations of quantum theory
-
EPJ Plus Focus Point Issue: Breakthrough optics- and complex systems-based technologies of modulation of drainage and clearing functions of the brain
-
EPJ Plus Focus Point Issue: Citizen science for physics: From Education and Outreach to Crowdsourcing fundamental research
-
EPJ Plus Focus Point Issue: Focus Point on Higher Derivatives in Quantum Gravity: Theory, Tests, Phenomenology
-
EPJ Plus Focus Point Issue: Memristive Chaotic Circuits and Systems
-
EPJ Quantum Technology: Special Issue on Quantum Random Number Generation
-
EPJ Quantum Technology: Special Issue on Quantum Standardization
-
EPJ ST Special Issue: Collective behavior of nonlinear dynamical oscillators
-
EPJ ST Special Issue: Fluid-Fluid and Fluid-Soft Matter Interaction
-
EPJ ST Special Issue: Noncommutativity and Physics
-
EPJ ST Special Issue: Physics of Animal Navigation
-
EPJ ST Special Issue: Structural Transformations and Non-Equilibrium Phenomena in Multicomponent Disordered Systems
-
EPJ Techniques and Instrumentation: New methodologies and approaches for the control of illicit production, use and trafficking of nuclear material
-
EPJ Techniques and Instrumentation: SI units and experimental techniques