EPJ D Highlight - Quantum battles in attoscience: Following three debates
- Details
- Published on 21 October 2021

Discussions among an extensive panel of attoscience researchers have clarified points of tension within the field, and offer new suggestions of how research should move forward in the face of these divisions.
In July 2020, 300 researchers from 34 different countries attended the CECAM virtual workshop, ‘Quantum Battles in Attoscience’. EPJ D presents three community papers which emerged from the in-depth panel discussions held at this occasion.
The field of attoscience has been kickstarted by new advances in laser technology. Research began with studies of three particular processes. Firstly, ‘above-threshold ionization’ (ATI), describing atoms which are ionized by more than the required number of photons. Secondly, ‘high harmonic generation’ (HHG) occurs when a target is illuminated by an intense laser pulse, causing it to emit high-frequency harmonics as a nonlinear response. Finally, ‘laser-induced nonsequential double ionization’ (NSDI) occurs when the laser field induces correlated dynamics within systems of multiple electrons.
Using powerful, ultrashort laser pulses, researchers can now study how these processes unfold on timescales of just 10-18 seconds. This gives opportunities to study phenomena such as the motions of electrons within atoms, the dynamics of charges within molecules, and oscillations of electric fields within laser pulses.
Today, many theoretical approaches are used to study attosecond physics. Within this landscape, two broadly opposing viewpoints have emerged: the ‘analytical’ approach, in which systems are studied using suitable approximations of physical processes; and the ‘ab-initio’ approach, where systems are broken down into their elemental parts, then analysed using fundamental physics.
Using ATI, HHG, and NSDI as case studies, the first of the Quantum Battles papers explores this tension through a dialogue between two hypothetical theorists, each representing viewpoints expressed by the workshop’s discussion panel. The study investigates three main questions: relating to the scope and nature of both approaches, their relative advantages and disadvantages, and their complementary roles in scientific discovery so far.
Another source of tension within the attoscience community relates to quantum tunnelling – describing how quantum particles can travel directly through energy barriers. Here, a long-standing debate exists over whether tunnelling occurs instantaneously, or if it requires some time; and if so, how much.
The second paper follows this debate through analysis of the panel’s viewpoints, as they discussed the physical observables of tunnelling experiments; theoretical approaches to assessing tunnelling time; and the nature of tunnelling itself. The study aims to explain why so many approaches reach differing conclusions, given the lack of any universally-agreed definition of tunnelling.
The wave-like properties of matter are a further key concept in quantum mechanics. On attosecond timescales, intense laser fields can be used to exploit interference between matter waves of electrons. This allows researchers to create images with sub-atomic resolutions, while maintaining the ability to capture dynamics occurring on ultra-short timescales.
The final ‘battle’ paper explores several questions which are rarely asked about this technique. In particular, it explores the physical differences between the roles of matter waves in HHG – which can be used to extend imaging capabilities; and ATI – which is used to generate packets of electron matter waves.
The Quantum Battles workshop oversaw a wide variety of lively, highly interactive debates between a diverse range of participants: from leading researchers, to those just starting out in their careers. In many cases, the discussions clarified the points of tension that exist within the attoscience community. This format was seen as particularly innovative by the community and the general public, who could follow the discussions via dedicated social media platforms. One participant even referred to the Quantum Battles as a `breath of fresh air’.
Quantum Battles promoted the view that while initial discoveries may stem from a specific perspective, scientific progress happens when representatives of many different viewpoints collaborate with each other. One immediate outcome is the "AttoFridays" online seminar series, which arose from the success of the workshop. With their fresh and open approach, Quantum Battles and AttoFridays will lead to more efficient and constructive discussions across institutional, scientific, and national borders.
Armstrong, G.S.J., Khokhlova, M.A., Labeye, M. et al. Dialogue on analytical and ab initio methods in attoscience. Eur. Phys. J. D 75, 209 (2021). https://doi.org/10.1140/epjd/s10053-021-00207-3
Hofmann, C., Bray, A., Koch, W. et al. Quantum battles in attoscience: tunnelling. Eur. Phys. J. D 75, 208 (2021). https://doi.org/10.1140/epjd/s10053-021-00224-2
Amini, K., Chacón, A., Eckart, S. et al. Quantum interference and imaging using intense laser fields. Eur. Phys. J. D 75, 275 (2021). https://doi.org/10.1140/epjd/s10053-021-00269-3
Open calls for papers
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ B Topical Issue: Evolutionary Game Theory
-
EPJ B Topical Issue: Recent developments in the functional renormalization group approach to correlated electron systems
-
EPJ D Topical Issue on Electron-Driven Processes from Single Collisions to High-Pressure Plasmas
-
EPJ D Topical Issue: Atomic, Molecular and Optical Techniques for Fundamental Physics
-
EPJ D Topical Issue: Dynamics of Systems on the Nanoscale (2021)
-
EPJ D Topical Issue: High Field QED Physics
-
EPJ D Topical Issue: Quantum Optics of Light and Matter: Honouring Alain Aspect
-
EPJ Data Science Special Issue on Data Science Perspectives on Economic Crime
-
EPJ E Topical Issue: 50 years of Small Angle Neutron Scattering at the ILL in Grenoble
-
EPJ E Topical Issue: Quantitative AI in Complex Fluids and Complex Flows: Challenges and Benchmarks
-
EPJ H Special Issue: History for Physics: Contextualizing modern developments in the foundations of quantum theory
-
EPJ Plus Focus Point Issue: Breakthrough optics- and complex systems-based technologies of modulation of drainage and clearing functions of the brain
-
EPJ Plus Focus Point Issue: Citizen science for physics: From Education and Outreach to Crowdsourcing fundamental research
-
EPJ Plus Focus Point Issue: Focus Point on Higher Derivatives in Quantum Gravity: Theory, Tests, Phenomenology
-
EPJ Plus Focus Point Issue: Memristive Chaotic Circuits and Systems
-
EPJ Quantum Technology: Special Issue on Quantum Random Number Generation
-
EPJ Quantum Technology: Special Issue on Quantum Standardization
-
EPJ ST Special Issue: Collective behavior of nonlinear dynamical oscillators
-
EPJ ST Special Issue: Fluid-Fluid and Fluid-Soft Matter Interaction
-
EPJ ST Special Issue: Noncommutativity and Physics
-
EPJ ST Special Issue: Physics of Animal Navigation
-
EPJ ST Special Issue: Structural Transformations and Non-Equilibrium Phenomena in Multicomponent Disordered Systems
-
EPJ Techniques and Instrumentation: New methodologies and approaches for the control of illicit production, use and trafficking of nuclear material
-
EPJ Techniques and Instrumentation: SI units and experimental techniques