EPJ D - Speedier Quantum Logic
- Details
- Published on 16 May 2011

Quantum information processing requires logical operations with multiple quantum bits. One route to this goal is controlling each qubit with a time-dependent external magnetic field. In this recent paper published in EPJ D, Heule et al. describe ways to perform logical operations on an ENTIRE superconducting qubit chain by controlling just ONE of the end qubits of the chain.
Strikingly, the authors show that certain operations - e.g., flipping the state of the last qubit in the chain - can be done faster by acting on the first qubit with a magnetic field in the x-direction only, rather than with fields in both x- and y-directions. These faster techniques can speed up logical operations. This paper thus paves the way for faster quantum logic with superconducting qubits.
To read the full paper 'Controlling qubit arrays with anisotropic XXZ Heisenberg interaction by acting on a single qubit' Eur. Phys. J. D (2011) please click here.
Topical Collections
Open calls for papers
-
EPJ AM Call for papers: Themed Issue on Global Advances in Electromagnetic Metasurfaces for Space
(EPJ AM)
-
Call for papers : Special Issue on Imaging, Diffraction, and Spectroscopy on the micro/nanoscale
(EPJ AP)
-
EPJ B Topical Issue: High Field Superconducting Magnets: Materials, Technology and Applications
(EPJ B)
-
EPJ N Topical Issue on Research Reactor use and projects on modeling and experimental breakthroughs for Advanced Nuclear Reactors
(EPJ N)
-
EPJ Plus Focus Point Issue: Layered Transition Metal Dichalcogenides (TMDs): Properties, Engineering, and Applications
(EPJ PLUS)