EPJ E Highlight - ‘Bottom-heavy squirmers’ adopt characteristic group behaviours
- Details
- Published on 26 May 2020

Simulated particles which mimic the behaviours of self-propelling microorganisms have distinct collective properties which depend on their velocities and bottom-heaviness.
From starling aberrations to self-turbulent fluids, ‘active systems’ encompass a wide family of phenomena in which individual objects propel themselves forward, allowing them to display intriguing collective behaviours. On microscopic scales, they are found in groups of living organisms which move around by squirming, and are aligned with Earth’s gravitational fields due to their bottom-heavy mass distributions. Through research published in EPJ E, Felix Rühle and Holger Stark at the Technical University of Berlin find that depending on their properties, these objects collectively spend most of their time in one of two states, between which some intriguing behaviours can emerge.
The duo’s insights could help to explain the mysterious properties of some groups of microorganisms, including thin films of phytoplankton which are sometimes found in coastal regions, and algae which form ‘dancing’ clumps. They found that these collective behaviours are determined by the ability of the self-propelling objects to swim upwards against the gravitational force, and their degrees of bottom-heaviness. For lower values of these quantities, groups of swimmers will sink to the bottom of their container just like inactive dust grains; but for higher values, will instead collect at the top. In between these states, smaller clusters of swimmers group at the bottom, which are fed by plumes of sinking particles. Also, porous clusters of swimmers can form, which allow individual particles to escape.
Rühle and Stark made their discoveries using computer simulations involving around 900 bottom-heavy squirmers in a fluid. Through their advanced techniques, they were able to account for any interactions between the swimmers, as well as the properties of the fluid itself. The duo’s results now offer fascinating new insights into the properties of active systems under the influence of gravity, and could help biologists to better understand the roles of certain microorganisms in natural ecosystems.
F Rühle, H Stark (2020), Emergent collective dynamics of bottom-heavy squirmers under gravity, Eur. Phys. J. E 43:26. DOI 10.1140/epje/i2020-11949-8
Open calls for papers
-
EPJ A Topical Issue: First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ A Topical Issue: Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy ion collisions, and astrophysics
-
EPJ A Topical Issue: The QCD Phase Diagram in Strong Magnetic Fields
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ B Topical Issue: Evolutionary Game Theory
-
EPJ B Topical Issue: Recent progress and emerging trends in Molecular Dynamics
-
EPJ D Topical Issue: Advances in Multi-Scale Modelling of Intense Electronic Excitation Processes
-
EPJ D Topical Issue: Atoms and Molecules in a Confined Environment
-
EPJ D Topical Issue: Low Temperature Plasmas: Processes, Diagnostics and Applications
-
EPJ D Topical Issue: Quantum Aspects of Attoscience
-
EPJ D Topical Issue: Spectroscopy of biomolecular ions in vacuo
-
EPJ D Topical Issue: “Advances in Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: from Biomolecules to Space Particles" (2020)
-
EPJ Data Science Special Issue on Data Science Perspectives on Economic Crime
-
EPJ E Special Issue: Diffusion and Convection in Nature
-
EPJ E Topical Issue: Physics and Geometry of Flexible Plates and Shells
-
EPJ E Topical Issue: Advances in Computational Methods for Biological Physics
-
EPJ E Topical Issue: Disordered, non-equilibrium systems: From supercooled liquids to amorphous solids
-
EPJ E Topical Issue: Physics of phase separation in cell biophysics: From non-equilibrium droplets to reaction-diffusion systems
-
EPJ E Topical Issue: Tissue Mechanics
-
EPJ N Topical Issue: Liquid-gas and liquid-vapour flows: theory, simulation and experiments
-
EPJ Plus Focus Point Issue: Breakthrough optics- and complex systems-based technologies of modulation of drainage and clearing functions of the brain
-
EPJ Quantum Technology: Special Issue on Quantum Industry
-
EPJ Quantum Technology: Special Issue on Quantum Metrology & Quantum Enhanced Measurement
-
EPJ ST Special Issue: Chaotic variable-order fractional neural networks
-
EPJ ST Special Issue: Complex Bio Rhythms
-
EPJ ST Special Issue: Current Trends in Computational and Experimental Techniques in Nonlinear Dynamics
-
EPJ ST Special Issue: Intense laser-matter interaction in atoms, finite and condensed systems
-
EPJ ST Special Issue: Symmetry, Dynamics and Strings: A Centennial Issue in Honor of Yoichiro Nambu
-
EPJ ST Special Issue: The Accelerating Universe – Evidence and Theories
-
EPJ ST Special Issue: Tipping in Complex Systems: Theory, Methods & Applications
-
EPJ ST Special Issue: Transport Phenomena and Phase Transitions in Soft and Disordered Systems
-
EPJ Techniques and Instumentation: Diagnostics for electric propulsion systems