EPJ Plus Highlight - Does the universe have a rest frame?
- Details
- Published on 21 March 2017

Experiment aims at resolving divergence between special relativity and standard model of cosmology
Physics is sometimes closer to philosophy when it comes to understanding the universe. Donald Chang from Hong Kong University of Science and Technology, China, attempts to elucidate whether the universe has a resting frame. The results have recently been published in EPJ Plus.
To answer this tricky question, he has developed an experiment to precisely evaluate particle mass. This is designed to test the special theory of relativity that assumes the absence of a rest frame, otherwise it would be possible to determine which inertial frame is stationary and which frame is moving. This assumption, however, appears to diverge from the standard model of cosmology, which assumes that what we see as a vacuum is not an empty space. The assumption is that the energy of our universe comes from the quantum fluctuation in the vacuum.
In a famous experiment conducted by Michelson and Morley in the late 19th century, the propagation of light was proved to be independent of the movement of the laboratory system. Einstein, his Special Theory of Relativity, inferred that the physical laws governing the propagation of light are equivalent in all inertial frames—this was later extended to all physics laws not just optics.
In this study, the author set out to precisely measure the masses of two charged particles moving in opposite directions. The conventional thinking assumes that the inertial frame applies equally to both particles. If that’s the case, no detectable mass difference between these two particles is likely to arise. However, if the contrary is true, and there is a rest frame in the universe, the author expects to see mass difference that is dependent on the orientation of the laboratory frame. This proposed experiment partially inspired by the Michelson and Morley experiments can be conducted using existing experimental techniques. For simplicity, an electron can be used as the charged particle in the experiment.
D. C. Chang (2017), Is there a rest frame in the universe? A proposed experimental test based on a precise measurement of particle mass, Eur. Phys. J. Plus 132:140, DOI 10.1140/epjp/i2017-11402-4
Open calls for papers
-
EPJ A Topical Collection devoted to the legacy of Peter Schuck
-
EPJ A Topical Collection: Radiative Corrections: From Medium to High Energy Experiments
-
EPJ A Topical Collection: Short-Range Correlations and the EMC Effect
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ D Topical Issue: Electron and Positron Interactions and Their Applications: a tribute to Professor Michael Brunger
-
EPJ D Topical Issue: Dynamics and Photodynamics: from isolated molecules to the condensed phase
-
EPJ D Topical Issue: Quantum Walks and applications
-
EPJ E Topical Issue: 50 years of Small Angle Neutron Scattering at the ILL in Grenoble
-
EPJ E Topical Issue: Festschrift in honor of Philip (Fyl) Pincus
-
EPJ E Topical Issue: Novel Molecular Materials and Devices from Functional Soft Matter
-
EPJ H Special Issue: History for Physics: Contextualizing modern developments in the foundations of quantum theory
-
EPJ Plus Focus Point Issue: Advances in cryogenic detectors for dark matter, neutrino physics and astrophysics
-
EPJ Plus Focus Point Issue: Citizen science for physics: From Education and Outreach to Crowdsourcing fundamental research
-
EPJ Plus Focus Point Issue: Focus Point on Higher Derivatives in Quantum Gravity: Theory, Tests, Phenomenology
-
EPJ Plus Focus Point Issue: The Magic of Glass
-
EPJ Quantum Technology - Open Calls for Papers
-
EPJ ST Special Issue Celestial Mechanics: new discoveries and challenges for space exploration
-
EPJ ST Special Issue: Application of Fractional-Calculus in Physical Systems
-
EPJ ST Special Issue: Machine Learning for quantum many-body systems
-
EPJ ST Special Issue: Molecular and Cellular Mechanics
-
EPJ Techniques and Instrumentation - Open Calls for Papers