EPJ Plus Highlight - Proving Einstein right using the most sensitive Earth rotation sensors ever made
- Details
- Published on 21 April 2017

A new study use the most precise inertial sensor available to date to measure whether Earth partially drags inertial frames along with its rotation
Einstein’s theory of gravity, also referred to as General Relativity, predicts that a rotating body such as the Earth partially drags inertial frames along with its rotation. In a study recently published in EPJ Plus, a group of scientists based in Italy suggests a novel approach to measuring what is referred to as frame dragging. Angela Di Virgilio of the National Institute of Nuclear Physics, INFN, in Pisa, Italy, and her colleagues propose using the most sensitive type of inertial sensors, which incorporate ring lasers as gyroscopes, to measure the absolute rotation rate of the Earth.
The experiment aims to measure the absolute rotation with respect to the local inertial frame, which is what is referred to as frame dragging. In principle, the ring laser should show one rotation around the Earth's axis every 24 hours. However, should observation by reference to fixed stars in the sky show a slightly different rate of rotation, the difference can be attributed to frame dragging.
The authors’ proposed experiment, called GINGER, requires two ring lasers to provide a reference measurement. It suggests comparing experimental GINGER data with the kinetic Earth rotation rate independently measured by the International Earth Rotation System Service (IERS). According to the authors, their proposed solution can accurately test the frame dragging effect at 1%.
This is a vast improvement compared to previous experiments, such as the 2011 Stanford Gyroscope Experiment, Gravity Probe B (GPB), which agreed with General Relativity's prediction for the frame dragging with an estimated 19% margin of error. Or the 2016 measurement of the dragging of the plane of an orbiting satellite, using laser ranged satellites like the satellite LARES, which boasted a 5% margin of error. The authors expect that, ultimately, the satellite-based approach could even deliver accuracy below the 1% error measurement threshold.
A. D. V. Di Virgilio, J. Belfi, and W.-T. Ni (2017), GINGER: a feasibility study, Eur. Phys. J. Plus 132:157, DOI 10.1140/epjp/i2017-11452-6
Open calls for papers
-
EPJ A Topical Issue: First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ A Topical Issue: Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy ion collisions, and astrophysics
-
EPJ A Topical Issue: The QCD Phase Diagram in Strong Magnetic Fields
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ B Topical Issue: Evolutionary Game Theory
-
EPJ B Topical Issue: Recent progress and emerging trends in Molecular Dynamics
-
EPJ D Topical Issue: Atoms and Molecules in a Confined Environment
-
EPJ D Topical Issue: Low Temperature Plasmas: Processes, Diagnostics and Applications
-
EPJ D Topical Issue: Quantum Aspects of Attoscience
-
EPJ D Topical Issue: Spectroscopy of biomolecular ions in vacuo
-
EPJ D Topical Issue: “Advances in Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: from Biomolecules to Space Particles" (2020)
-
EPJ E Special Issue: Diffusion and Convection in Nature
-
EPJ E Topical Issue: Physics and Geometry of Flexible Plates and Shells
-
EPJ E Topical Issue: Advances in Computational Methods for Biological Physics
-
EPJ E Topical Issue: Disordered, non-equilibrium systems: From supercooled liquids to amorphous solids
-
EPJ E Topical Issue: Physics of phase separation in cell biophysics: From non-equilibrium droplets to reaction-diffusion systems
-
EPJ E Topical Issue: Tissue Mechanics
-
EPJ N Topical Issue: Liquid-gas and liquid-vapour flows: theory, simulation and experiments
-
EPJ Plus Focus Point Issue: Breakthrough optics- and complex systems-based technologies of modulation of drainage and clearing functions of the brain
-
EPJ Quantum Technology: Special Issue on Quantum Industry
-
EPJ Quantum Technology: Special Issue on Quantum Metrology & Quantum Enhanced Measurement
-
EPJ ST Special Issue: Transport properties of non-Newtonian nanofluids and applications
-
EPJ ST Special Issue: Chaotic variable-order fractional neural networks
-
EPJ ST Special Issue: Circuit Application of Chaotic Systems: Modeling, Dynamical Analysis and Control
-
EPJ ST Special Issue: Complex Bio Rhythms
-
EPJ ST Special Issue: Intense laser-matter interaction in atoms, finite and condensed systems
-
EPJ ST Special Issue: Modeling, Machine Learning and Astronomy
-
EPJ ST Special Issue: Non-equilibrium phase transitions in heterogeneous systems: biophysical aspects
-
EPJ ST Special Issue: Strong Correlations in Dense Matter Physics
-
EPJ ST Special Issue: The Accelerating Universe – Evidence and Theories
-
EPJ ST Special Issue: Tipping in Complex Systems: Theory, Methods & Applications
-
EPJ Techniques and Instrumentation: Instrumentation and Control of Large Helium Cryogenic Systems
-
EPJ Techniques and Instumentation: Diagnostics for electric propulsion systems