EPJ Plus Highlight - Ice shapes the landslide landscape on Mars
- Details
- Published on 10 November 2017

SA new study uses a combination of glacial morphology and remote sensing measurement to explore the role of ice in shaping Martian landslides
How good is your Martian geography? Does Valles Marineris ring a bell? This area is known for having landslides that are among the largest and longest in the entire solar system. They make the perfect object of study due to their steep collapse close to the scarp, extreme thinning, and long front runout. In a new research paper published in EPJ Plus, Fabio De Blasio and colleagues from Milano-Bicocca University, Italy, explain the extent to which ice may have been an important medium of lubrication for landslides on Mars. This can in turn help us understand the geomorphological history of the planet and the environment of deposition.
The authors noted that the landslides in Valles Marineris are of similar shape as ice-lubricated landslides on Earth. In their paper, they feed these observations, combined with remote sensing measurements showing the presence of massive ice under the soil, into a numerical simulation exploring the possibility that such landslides were lubricated by ice.
They then explore two possible scenarios to explain what happens to landslides rocks: one in which ice is only present at the base, and another in which ice impregnates the soil. To reproduce the vertical collapse of landslide material in the landslide scarp area and the extreme thinning and runout in the front, the model must take into account the presence of ice in the calculations.
The authors, therefore, demonstrate how the presence of ice, exposed on the ground or in the collapsing slope, could affect the shape and velocity of these landslides. The calculated velocity of landslides are often well in excess of 100 m/s and up to 200 m/s at peak. The authors then compare the results of the numerical simulations with real images and elevation profiles, allowing them to draw conclusions regarding the influence of the climate on shaping Martian landscapes.
F. V. De Blasio and G. B. Crosta (2017), Modelling Martian landslides: dynamics, velocity, and paleoenvironmental implications, Eur. Phys. J. Plus 132:468, DOI 10.1140/epjp/i2017-11727-x
Open calls for papers
-
EPJ A Topical Collection devoted to the legacy of Peter Schuck
-
EPJ A Topical Collection: Radiative Corrections: From Medium to High Energy Experiments
-
EPJ A Topical Collection: Short-Range Correlations and the EMC Effect
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ D Topical Issue: Electron and Positron Interactions and Their Applications: a tribute to Professor Michael Brunger
-
EPJ D Topical Issue: Dynamics and Photodynamics: from isolated molecules to the condensed phase
-
EPJ D Topical Issue: Quantum Walks and applications
-
EPJ E Topical Issue: 50 years of Small Angle Neutron Scattering at the ILL in Grenoble
-
EPJ E Topical Issue: Festschrift in honor of Philip (Fyl) Pincus
-
EPJ E Topical Issue: Novel Molecular Materials and Devices from Functional Soft Matter
-
EPJ H Special Issue: History for Physics: Contextualizing modern developments in the foundations of quantum theory
-
EPJ Plus Focus Point Issue: Advances in cryogenic detectors for dark matter, neutrino physics and astrophysics
-
EPJ Plus Focus Point Issue: Citizen science for physics: From Education and Outreach to Crowdsourcing fundamental research
-
EPJ Plus Focus Point Issue: Focus Point on Higher Derivatives in Quantum Gravity: Theory, Tests, Phenomenology
-
EPJ Plus Focus Point Issue: The Magic of Glass
-
EPJ Quantum Technology - Open Calls for Papers
-
EPJ ST Special Issue Celestial Mechanics: new discoveries and challenges for space exploration
-
EPJ ST Special Issue: Application of Fractional-Calculus in Physical Systems
-
EPJ ST Special Issue: Machine Learning for quantum many-body systems
-
EPJ ST Special Issue: Molecular and Cellular Mechanics
-
EPJ Techniques and Instrumentation - Open Calls for Papers