EPJ ST Highlight - Spacecrafts get a boost in ‘Aerogravity Assisted’ interactions
- Details
- Published on 29 May 2020

New research examines the effect of rotation and other variables in the applications of ‘aerogravity assisted’ manoeuvres to obtain an energy boost for space craft.
In a recent paper published in EPJ Special Topics, Jhonathan O. Murcia Piñeros, a post-doctoral researcher at Space Electronics Division, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, and his co-authors, map the energy variations of the spacecraft orbits during ‘aerogravity assisted’ (AGA) manoeuvres. A technique in which energy gains are granted to a spacecraft by a close encounter with a planet or other celestial body via that body’s atmosphere and gravity.
In 2019, Voyager 2 became the second man-made object to leave the solar system, following its counterpart Voyager 1. The energy to carry these probes was obtained via interactions with the solar system’s giant planets – an example of a pure gravity assisted manoeuvre.
The topic approached by the paper is one that has been tackled from a number of different angles before, but the team took the novel approach of considering a passage inside the atmosphere of a planet and the effects of the spacecraft’s rotation as it performs such a manoeuvre. During the course of simulating over 160,000 AGA manoeuvres around the Earth, the team adjusted parameters such as masses, sizes and angular momentum, to see how this would affect the ‘drag’ on the spacecraft, thus changing the amount of energy imparted.
The researchers discovered that the larger the values of the area to mass ratio (A/m – the inverse of area density) that they employed in their models the greater the drag was on the probe, and thus, the greater the energy loss it experienced due to this drag, and the lower its velocity was as a result, but it may increase the energy gains from gravity, due to the larger rotation of the velocity of the spacecraft. The same effect also increased the region in which energy losses occurred whilst simultaneously reducing the area in which maximum velocity can be achieved. Their results indicate that as this is the inverse of area density and density falls off at greater altitudes, drag can be reduced by a trajectory that brings a craft in at higher altitudes. This can eventually approach the values of trajectory given by a pure gravity-assisted AGA.
As the Voyager missions show, when performed at maximum efficiency, AGA manoeuvres have the potential to send mankind beyond the reaches of our solar system into the wider galaxy.
Piñeros. J. O. M., Gomes. V. M., dos Santos. W. A., Golebiewska J. Effects of the rotation of a spacecraft in an atmospheric close approach with the Earth. Eur. Phys. J. Spec. Top. 229, 1517–1526 (2020). DOI 10.1140/epjst/e2020-900144-9
Open calls for papers
-
EPJ A Topical Collection devoted to the legacy of Peter Schuck
-
EPJ A Topical Collection: Radiative Corrections: From Medium to High Energy Experiments
-
EPJ A Topical Collection: Short-Range Correlations and the EMC Effect
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ D Topical Issue: Electron and Positron Interactions and Their Applications: a tribute to Professor Michael Brunger
-
EPJ D Topical Issue: Dynamics and Photodynamics: from isolated molecules to the condensed phase
-
EPJ D Topical Issue: Quantum Walks and applications
-
EPJ E Topical Issue: 50 years of Small Angle Neutron Scattering at the ILL in Grenoble
-
EPJ E Topical Issue: Festschrift in honor of Philip (Fyl) Pincus
-
EPJ E Topical Issue: Novel Molecular Materials and Devices from Functional Soft Matter
-
EPJ H Special Issue: History for Physics: Contextualizing modern developments in the foundations of quantum theory
-
EPJ Plus Focus Point Issue: Advances in cryogenic detectors for dark matter, neutrino physics and astrophysics
-
EPJ Plus Focus Point Issue: Citizen science for physics: From Education and Outreach to Crowdsourcing fundamental research
-
EPJ Plus Focus Point Issue: Focus Point on Higher Derivatives in Quantum Gravity: Theory, Tests, Phenomenology
-
EPJ Plus Focus Point Issue: The Magic of Glass
-
EPJ Quantum Technology - Open Calls for Papers
-
EPJ ST Special Issue Celestial Mechanics: new discoveries and challenges for space exploration
-
EPJ ST Special Issue: Application of Fractional-Calculus in Physical Systems
-
EPJ ST Special Issue: Machine Learning for quantum many-body systems
-
EPJ ST Special Issue: Molecular and Cellular Mechanics
-
EPJ Techniques and Instrumentation - Open Calls for Papers