EPJ A Highlight - Open refereed paper reveals how to study unstable radioactive nuclei’s dual traits
- Details
- Published on 16 November 2016

HIE-ISOLDE acceleration of radioactive beams to peer into the dual state of matter unique to nuclei
Radioactive nuclides, found within an atom's core, all share a common feature: they have too many or too few neutrons to be stable. In a new review published in EPJ A, Maria Jose Borges and Karsten Riisager explain how overcoming technical difficulties in accelerating such radioactive nuclei beams can help push back the boundaries of nuclear physics research. This fascinating topic is the first EPJ A paper to be subjected to an open referee process, whereby the referee's comments are included.
The authors outline how the new CERN project HIE-ISOLDE will reach the energy levels needed to make two nuclei overcome the electric repulsion between them—referred to as the Coulomb barrier. This means that it will be possible to design experimental tools to explore both single-particle and collective degrees of radioactive nuclei freedom. This will improve our understanding of the unique duality in the degrees of freedom, which no other state of matter exhibits.
The radioactive nuclei are generated at CERN, near the Franco-Swiss border, via the Isotope mass Separator On-Line facility (ISOLDE), which is a unique source of low-energy beams. Specifically, the HIE-ISOLDE project aims to raise the maximum energy of accelerated particles beyond the Coulomb barrier, to more than 10 megaelectron volts / atomic mass units (MeV/u).
In this review, the authors outline of the history of the project and then explain the nature of the superconducting linear accelerator used in HIE-ISOLDE, giving further details on how physicists plan to improve the beam quality and intensity. Subsequently, the team is also planning to add superconducting cavities allowing for a deceleration of the beams to better control optimum energy for each reaction and tailor them, for example, to conditions found in the stars for astrophysics studies. Many other applications are pending and the review offers a sample of planned studies.
Ultimately, physicists aim to have a “dial-a-radioactive-nuclei beam” of the same quality as stable nuclei beams.
M.J.G. Borge and K. Riisager (2016), HIE-ISOLDE, the project and the physics opportunities, European Physical Journal A 52: 334, DOI 10.1140/epja/i2016-16334-4
Open calls for papers
-
EPJ A Topical Collection devoted to the legacy of Peter Schuck
-
EPJ A Topical Collection: Radiative Corrections: From Medium to High Energy Experiments
-
EPJ A Topical Collection: Short-Range Correlations and the EMC Effect
-
EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Properties
-
EPJ B Topical Issue: Extreme Value Statistics and Search in Biology: Theory and Simulations
-
EPJ D Topical Issue on Electron-Driven Processes from Single Collisions to High-Pressure Plasmas
-
EPJ D Topical Issue: Dynamics and Photodynamics: from isolated molecules to the condensed phase
-
EPJ D Topical Issue: Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: Fundamentals and Applications (2022)
-
EPJ D Topical Issue: Precision Physics of Simple Atomic Systems
-
EPJ D Topical Issue: Quantum Walks and applications
-
EPJ Data Science Special Issue on Data Science Perspectives on Economic Crime
-
EPJ E Topical Issue: 50 years of Small Angle Neutron Scattering at the ILL in Grenoble
-
EPJ E Topical Issue: Festschrift in honor of Philip (Fyl) Pincus
-
EPJ E Topical Issue: Novel Molecular Materials and Devices from Functional Soft Matter
-
EPJ E Topical Issue: Quantitative AI in Complex Fluids and Complex Flows: Challenges and Benchmarks
-
EPJ H Special Issue: History for Physics: Contextualizing modern developments in the foundations of quantum theory
-
EPJ Plus Focus Point Issue: Advances in cryogenic detectors for dark matter, neutrino physics and astrophysics
-
EPJ Plus Focus Point Issue: Citizen science for physics: From Education and Outreach to Crowdsourcing fundamental research
-
EPJ Plus Focus Point Issue: Focus Point on Higher Derivatives in Quantum Gravity: Theory, Tests, Phenomenology
-
EPJ Quantum Technology: Special Issue on Quantum Random Number Generation
-
EPJ Quantum Technology: Special Issue on Quantum Standardization
-
EPJ ST Special Issue: Application of Fractional-Calculus in Physical Systems
-
EPJ ST Special Issue: Framework of Fractals in Data Analysis: Theory and Interpretation
-
EPJ ST Special Issue: Machine Learning for quantum many-body systems
-
EPJ ST Special Issue: Molecular and Cellular Mechanics
-
EPJ ST Special Issue: Structural Transformations and Non-Equilibrium Phenomena in Multicomponent Disordered Systems
-
EPJ Techniques and Instrumentation: New methodologies and approaches for the control of illicit production, use and trafficking of nuclear material
-
EPJ Techniques and Instrumentation: SI units and experimental techniques