Distinguished EPJ Referees

News

EPJ E Review - Making sense of particles at fluid interfaces

The relative position of a particle in relation to the interfacial plane

In this EPJ E Topical Review, Armando Maestro and colleagues unravel the physico-chemical bases underlying the attachment of particles to fluid interfaces. Their focus is on the relaxation mechanisms involved in the equilibration of particle-laden interfaces.

Particle-laden interfaces play a key role in many systems that are used in industrial and technological applications, such as the stabilization of foams, emulsions, or thin films, flotation processes, encapsulation, pharmaceutical formulations, food technology and catalysis.

Read more...

EPJ D Highlight - Producing hydrogen from splitting water without splitting hairs

Adsorption of water molecules on the surface of copper nanoparticles could produce hydrogen faster and more efficiently.

New model explains interactions between small copper clusters used as low-cost catalysts in the production of hydrogen by breaking down water molecules

Copper nanoparticles dispersed in water or in the form of coatings have a range of promising applications, including lubrication, ink jet printing, as luminescent probes, exploiting their antimicrobial and antifungal activity, and in fuel cells. Another promising application is using copper as a catalyst to split water molecules and form molecular hydrogen in gaseous form. At the heart of the reaction, copper-water complexes are synthesised in ultra-cold helium nanodroplets as part of the hydrogen production process, according to a recent paper published in EPJ D. For its authors, Stefan Raggl, from the University of Innsbruck, Austria, and colleagues, splitting water like this is a good way of avoiding splitting hairs.

Read more...

EPJ E Colloquium - Laboratory models to understand and control the drying of colloidal systems

Nano-container based anti-corrosion coating

The drying of complex solutions, such as colloidal dispersions, is a phenomenon of great interest, both scientific and technical, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art. This EPJ E Colloquium discusses a wide variety of problems related to the drying of colloidal systems, from the stabilization of dairy products to cracking phenomena that occur at the surface of planets or on an oil painting. The diversity of these processes lies in the great variability in size and/or time scales and makes it very hard to understand and analyse the mechanisms at play. The results presented in this review attest to the reliability of experimental modelling in the laboratory, a clever way to use the drying of complex fluids to reproduce and study original mechanisms.

Read more...

EPJ E Highlight - Switching DNA and RNA on and off

Caption: Electric field (E) dependence of polarisation (P) for a cytosine nucleobase

Natural switching of DNA and RNA polarisation opens possibilities to develop novel biosensors and high-capacity data storage

DNA and RNA are naturally polarised molecules containing electric dipole moments due to the presence of a significant number of charged atoms at neutral pH. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field—a property referred to as bioferroelectricity. However, the mechanism of these properties remains unclear. In a new study published in EPJ E, See-Chuan Yam from the University of Malaya, Kuala Lumpur, Malaysia, and colleagues show that all the DNA and RNA building blocks, or nucleobases, exhibit a non-zero polarisation in the presence of polar atoms or molecules such as amidogen and carbonyl. They have two stable states, indicating that DNA and RNA basically have memory properties, just like a ferroelectric or ferromagnetic material. This is relevant for finding better ways of storing data in DNA and RNA because they have a high capacity for storage and offer a stable storage medium. Such physical properties may play an important role in biological processes and functions. Specifically, these properties could also be extremely useful for possible applications as a biosensor to detect DNA damage and mutation.

Read more...

EPJ Plus Focus Point - Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation

Differential operators with non-singular kernels have been suggested recently and have raised interest in many fields of science, technology and engineering. They have being recognized to have brought news tools in applied mathematics and other applied sciences, as they are able to capture and observe a more complex physical behavior of nature. One of their unique properties is crossover behavior; in particular, their ability to capture Brownian motion, stochastic processes, anomalous diffusion and power-law dependency processes. This Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation edited by A. Atangana, Z. Hammouch, G. Mophou and K. M. Owolabi in EPJ Plus aims at capturing current developments and initiatives of these new mathematical tools in modeling real-world problems. It focuses on new numerical and analytical methods for solving the complex real-world problems arising in physics. Several new results were presented and published in this Focus Point. In particular, a revolutionary paper has led to the extension of the field of non-local operators and their applications. The particular attention devoted to these new mathematical tools leaves no doubt on the fact that the future of modeling real-worl problems relies on these operators.

Read more...

EPJ B Highlight - Clearer vision of the biochemical reaction that allows us to see

Probability of the nuclei crossing the energy barrier over time.

Physicists develop improved algorithms for simulating how complex molecules respond to excitation by photons, and explaining what happens when photons hit our eyes

What makes it possible for our eyes to see? It stems from a reaction that occurs when photons come into contact with a protein in our eyes, called rhodopsin, which adsorbs the photons making up light. In a paper published in EPJ B, Federica Agostini, University Paris-Sud, Orsay, France, and colleagues propose a refined approximation of the equation that describes the effect of this photo-excitation on the building blocks of molecules. Their findings also have implications for other molecules, such as azobenzene, a chemical used in dyes. The incoming photon triggers certain reactions, which can result, over time, in dramatic changes in the properties of the molecule itself. This study was included in a special anniversary issue of EPJB in honour of Hardy Gross.

Read more...

EPJ Plus Editor Valerio Lucarini wins Whitehead Prize

Valerio Lucarini

Dr Valerio Lucarini, professor of Statistical Mechanics at the Department of Mathematics and Statistics, Reading https://www.reading.ac.uk/maths-and-stats/, and director of the Mathematics for Planet Earth Centre https://www.reading.ac.uk/maths-and-stats/research/mathematics-of-planet-earth/Centre-for-the-Mathematics-of-Planet-Earth.aspx was one of 6 winners of the Whitehead Prize announced on 29th June 2018 by the London Mathematical Society (LMS), and was awarded with this prize for his work in statistical physics to the theory and modelling of climate dynamics, along with his pioneering leadership in mathematics applied to climate science.

Read more...

EPJ Plus Highlight - Scoping magnetic fields out for prevention

Magnetic field generated by a current (I) through a finite wire.

A new study reveals how to best evaluate the circulation of magnetic fields around closed loops

Concerns about the effects of magnetic fields on human health require careful monitoring of our exposure to them. Mandatory exposure limits have been defined for electric and hybrid vehicle architectures, in domestic and work environments, or simply to shelter sensitive devices from unintended sources of magnetic disturbance. In a new study published in EPJ Plus, physicists Jose Manuel Ferreira and Joaquim Anacleto from the Trás-os-Montes e Alto Douro University in Portugal develop a method for deriving an approximate value of the circulation around a loop of the magnetic field generated by the flow of electric current in an arbitrarily-shaped wire of a given length.

Read more...

EPJ H Highlight - Centenary of cosmological constant lambda

alt
How history placed the cosmological constant at the heart of our understanding of the universe. Photo by Tbel Abuseridze on Unsplash https://unsplash.com/photos/0G1aF-yrlu8

Insights into its 100-year history reveal how the cosmological constant was marginalised by physicists before being reinstated by astronomers to explain the accelerated expansion of the universe

Physicists are now celebrating the 100th anniversary of the cosmological constant. On this occasion, two papers recently published in EPJ H highlight its role in modern physics and cosmology. Although the term was first introduced when the universe was thought to be static, today the cosmological constant has become the main candidate for representing the physical essence believed to be responsible for the accelerated expansion of our universe. Before becoming widely accepted, the cosmological constant was during decades the subject of many discussions about its necessity, its value and its physical essence. Today, there are still unresolved problems in understanding the deep physical nature of the phenomena associated with the cosmological constant.

Read more...

EPJ D Highlight - High-fidelity quantum secret sharing prevents eavesdropping

The relationship between fidelity, amplitude damping coefficient, and unknown state coefficient.

Quantum secret-sharing scheme for noisy environments

To protect the confidentiality of a message during its transmission, people encrypt it. However, noise in the transmission channels can be a source of concern regarding how faithful the message transmission may be after it has been decrypted. This is particularly important for secrets shared using quantum scale messengers. For example, a classical secret takes the shape of a string of zeros and ones, whereas a quantum secret is akin to an unknown quantum state of two entangled particles carrying the secret. This is because no two quantum particles can be in the same state at any given time. In a new study published in EPJ D, Chen-Ming Bai from Shaanxi Normal University, Xi’an, China, and colleagues calculate the degree of fidelity of the quantum secret once transmitted and explore how to avoid eavesdropping.

Read more...

Open calls for papers